Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats
DOI:
https://doi.org/10.5219/343Keywords:
bone, osteotoxicology, cadmium, diazinon, ratsAbstract
Food contamination from natural or anthropogenic sources poses severe risks to health of human and animals. Bone is a metabolically active organ, which can be affected by various toxic substances, such as cadmium (Cd) and diazinon (DZN), leading to disruption in bone metabolic processes. The present study was designed to investigate the effect of simultaneous peroral administration to Cd and DZN on femoral compact bone structure in adult male rats. A total of twenty 1-month-old male Wistar rats were randomized into two experimental groups. In the first group (EG), young males were dosed with a combination of 30 mg CdCl2/L and 40 mg DZN/L in drinking water, for 90 days. Ten 1-month-old males without Cd-DZN intoxication served as a control group (CG). After 90 days of daily peroral exposure, evaluations of femoral bone
macro- and micro-structure were performed in each group. We found no significant differences in body weight, femoral weight, femoral length and cortical bone thickness between both groups (EG and CG). However, rats from the group EG displayed different microstructure in the middle part of the substantia compacta where primary vascular radial bone tissue appeared. In some cases, vascular expansion was so enormous that canals were also present near the periost. On the other hand, they occurred only near endosteal surfaces in rats from the control group. Moreover, a smaller number of primary and secondary osteons was identified in Cd-DZN-exposed rats. This fact signalizes reduced mechanical properties of their bones. Anyway, our results suggest an adaptive response of compact bone tissue to Cd-DZN-induced toxicity in adult male rats in order to prevent osteonecrosis.
Downloads
References
Arbon, K. S., Christensen, C. M., Harvey, W. A., Heggland, S. J. 2012. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells. Food Chem. Toxicol., vol. 50, p. 198-205. https://doi.org/10.1016/j.fct.2011.10.031 PMid:22019892
Bernard, A. 2008. Cadmium & its adverse effects on human health. Indian J. Med. Res., vol. 128, p. 557-564. PMid:19106447
Brama, M., Politi, L., Santini, P., Migliaccio, S., Scandurra, R. 2012. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways. J. Endocrinol. Invest., vol. 35, no. 2, p. 198-208. https://doi.org/10.3275/7801 PMid:21697648
Brzóska, M. M., Moniuszko-Jakoniuk, J. 2005a. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol., vol. 202, no. 1, p. 68-83. https://doi.org/10.1016/j.taap.2004.06.007 PMid:15589978
Brzóska, M. M., Moniuszko-Jakoniuk, J. 2005b. Bone metabolism of male rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol., vol. 207, no. 3, p. 195-211. https://doi.org/10.1016/j.taap.2005.01.003 PMid:16129113
Brzóska, M. M., Rogalska, J., Galazyn-Sidorczuk, M., Jurczuk, M., Roszczenko, A., Kulikowska-Karpińska, E., Moniuszko-Jakoniuk, J. 2007. Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology, vol. 237, no. 1-3, p. 89-103. https://doi.org/10.1016/j.tox.2007.05.001 PMid:17560002
Brzóska, M. M., Galazyn-Sidorczuk, M., Rogalska, J., Roszczenko, A., Jurczuk, M., Majewska, K., Moniuszko-Jakoniuk, J. 2008. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chem-Biol. Interact., vol. 171, no. 3, p. 312-324. https://doi.org/10.1016/j.cbi.2007.11.007 PMid:18164699
Brzóska, M. M., Majewska, K., Kupraszewicz, E. 2010. Effects of low, moderate and relatively high chronic exposure to cadmium on long bones susceptibility to fractures in male rats. Environ. Toxicol. Pharmacol., vol. 29, no. 3, p. 235-245. https://doi.org/10.1016/j.etap.2010.01.005 PMid:21787608
Cabaj, M. 2012. The effect of diazinon and selenium on structure and function of testes and epididymis in rats (in Slovak): dissertation thesis. Nitra: SAU, 180 p.
Carageorgiou, H., Tzotzes, V., Pantos, C., Mourouzis, C., Zarros, A., Tsakiris, S. 2004. In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin. Pharmacol. Toxicol., vol. 94, no. 3, p. 112-118. PMid:15049340
Chen, X., Zhu, G., Gu, S., Jin, T., Shao, C. 2009. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ. Toxicol. Pharmacol., vol. 28, p. 232-236. https://doi.org/10.1016/j.etap.2009.04.010 PMid:21784008
Cho, J., Lee, C. 1990. Effects of diazinon on the anatomical and embryological changes in the developing chick embryo. Res. Rep. RDA(V), vol. 32, p. 35-47.
Cho, J., Lee, C. 1991. Studies on diazinon induced inhibition of skeletal mineralization in chick embryo. Res. Rep. RDA(V), vol. 33, p. 41-60.
Comelekoglu, U., Yalin, S., Bagis, S., Ogenler, O., Sahin, N. O., Yildiz, A., Coskun, B., Hatungil, R., Turac, A. 2007. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone: mechanical, biochemical, and histopathological evaluation. Ecotox. Environ. Safe., vol. 66, no. 2, p. 267-271. https://doi.org/10.1016/j.ecoenv.2006.01.006 PMid:16530835
Compston, J. E., Vedi, S., Stephen, A. B., Bord, S., Lyons, A. R., Hodges, S. J., Scammell, B. E. 1999. Reduced bone formation after exposure to organophosphates. Lancet., vol. 354, p. 1791-1792. https://doi.org/10.1016/S0140-6736(99)04466-9 PMid:21697648
Coonse, K. G., Coonts, A. J., Morrison, E. V., Heggland, S. J. 2007. Cadmium induces apoptosis in the human osteoblast-like cell line Saos-2. J. Toxicol. Environ. Health A., vol. 70, no. 7, p. 575-581. PMid:17365611
Enlow, D. H., Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues. Part I. Texas J. Sci., vol. 8, p. 405-412.
Enlow, D. H., Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissues. Part III. Texas J. Sci., vol. 10, p. 187-230.
Erben, R. G. 1996. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec., vol. 246, p. 39-46. https://doi.org/10.1002/(SICI)1097-0185(199609)246:1<39::AID-AR5>3.0.CO;2-A PMid:8876822
Garg, U. K., Pal, A. K., Jha, G. J., Jadhao, S. B. 2004. Pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides on bone health of broiler chicks. Toxicologic. Pathol., vol. 32, no. 3, p. 364-369. https://doi.org/10.1080/01926230490431745 PMid:15204980
Garn, S. M., Rohmann, C. G., Nolan, P. 1991. The developmental nature of bone changes during aging. Nutr. Rev., vol. 49, no. 6, p. 176-178. https://doi.org/10.1111/j.1753-4887.1991.tb03014.x
Genever, P. G., Birch, M. A., Brown, E., Skerry, T. M. 1999. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? Bone, vol. 24, no. 4, p. 297-304. https://doi.org/10.1016/S8756-3282(98)00187-2 PMid:10221541
Grisaru, D., Lev-Lehman, E., Schapira, M., Chaikin, E., Lessing, J. B., Eldor, A., Eckstein, F., Soreq, H. 1999. Human osteogenesis involves differentiation-dependent increases in the morphogenically active 39 alternative splicing variant of acetylcholinesterase. Mol. Cell Biol., vol. 19, no. 1, p. 788-795. PMid:9858601
Hofstetter, W. 2007. Bone remodeling. Eur. Cell Mater., vol. 14, p. 31.
Hoogduijn, M. J., Rakonczay, Z., Genever, P. G. 2006. The effects of anticholinergic insecticides on human mesenchymal stem cells. Toxicol. Sci., vol. 94, no. 2, p. 342-350. https://doi.org/10.1093/toxsci/kfl101 PMid:16960032
Inkson, C. A., Brabbs, A. C., Grewal, T. S., Skerry, T. M., Genever, P. G. 2004. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone, vol. 35, no. 2, p. 819-827. https://doi.org/10.1016/j.bone.2004.05.026 PMid:21697648
Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., Vahter, M. 1998. Health effects of cadmium exposure - a review of the literature and a risk estimate. Scand. J. Work Environ. Health, vol. 24 (Suppl 1), p. 1-51. PMid:9569444
Järup, L., Ákesson, A. 2009. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol., vol. 238, p. 201-208. https://doi.org/10.1016/j.taap.2009.04.020 PMid:19409405
Lari, R., Elahi, M. H., Lari, P. 2012. Diazinon exposure reduces trabecular and cortical bone mineral density. J. Med. Toxicol., vol. 8, p. 231.
Lévesque, M., Martineau, C., Jumarie, C., Moreau, R. 2008. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells. Toxicol. Appl. Pharmacol., vol. 231, no. 3, p. 308-317. https://doi.org/10.1016/j.taap.2008.04.016 PMid:18538363
Li, J. P., Akiba, T., Marumo, F. 1997. Long-term, low-dose, cadmium-induced nephropathy with renal osteopathy in ovariectomized rats. J. Toxicol. Sci., vol. 22, no. 3, p. 185-198. https://doi.org/10.2131/jts.22.3_185 PMid:9279821
Ludle, J. L., Mehrle, M. P., Foster, L. M., Earlkaiser, T. 1979. Bone development in black ducks as affected by dietarytoxophene. Pestic. Biochem. Physiol., vol. 10, p. 168-173. https://doi.org/10.1016/0048-3575(79)90018-X
Martiniaková, M., Grosskopf, B., Vondráková, M., Omelka, R., Fabiš, M. 2005. Observation of the microstructure of rat cortical bone tissue. Scripta Med., vol. 78, no. 1, p. 45-50. http://www.med.muni.cz/biomedjournal/pdf/2005/01/45-50.pdf
Martiniaková, M., Grosskopf, B., Omelka, R., Dammers, K., Vondráková, M., Bauerová, M. 2007. Histological study of compact bone tissue in some mammals: a method for species determination. Int. J. Osteoarch., vol. 17, no. 1,
p. 82-90. https://doi.org/10.1002/oa.856
Martiniaková, M., Omelka, R., Grosskopf, B., Sirotkin, A. V., Chrenek, P. 2008. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand., vol. 50, p. 15. https://doi.org/10.1186/1751-0147-50-15 PMid:18522730
Martiniaková, M., Omelka, R., Grosskopf, B., Mokošová, Z., Toman, R. 2009. Histological analysis of compact bone tissue in adult laboratory rats. Slovak J. Anim. Sci., vol. 42, p. 56-59. http://www.cvzv.sk/slju/sup09/Martiniakova.pdf
Martiniaková, M., Chovancová, H., Omelka, R., Boboňová, I 2013. Effects of risk substances on bone tissue structure in rats (in Slovak): scientific monograph. Nitra: UKF, p. 187. ISBN 978-80-558-0295-4.
Meneely, G. A., Wyttenbach, C. R. 1989. Effects of the organophosphate insecticides diazinon and parathion on bobwhite quail embryos: Skeletal defects and acetylcholinesterase activity. J. Exp. Zool., vol. 252, no. 1, p. 60-70. https://doi.org/10.1002/jez.1402520109 PMid:2809535
Montz, W. E. Jr. 1983. Effects of organophosphate insecticides on aspects of reproduction and survival in small mammals: dissertation thesis. Blacksburg: Virginia Polytechnic Institute and State University. 176 p.
Moulis, J. -M., Thévenod, F. 2010. New perspectives in cadmium toxicity: an introduction. Biometals, vol. 23, no. 5, p. 763-768. https://doi.org/10.1007/s10534-010-9365-6 PMid:20632201
Nassredine, L., Parent-Massin, D. 2002. Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol. Lett., vol. 127, no. 1-3, p. 29-41.
http://www.sciencedirect.com/science/article/pii/S0378427401004805#
Noël, L., Guérin, T., Kolf-Clauw, M. 2004. Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health. Food Chem. Toxicol., vol. 42, no. 8, p. 1203-1210. https://doi.org/10.1016/j.fct.2004.02.017 PMid:15207369
Oruc, Ö. E., Usta, D. 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol., vol. 23, no. 1, p. 48-55. https://doi.org/10.1016/j.etap.2006.06.005 PMid:21783736
Reim, N. S., Breig, B., Stahr, K., Eberle, J., Hoeflich, A., Wolf, E., Erben, R. G. 2008. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J. Bone Miner. Res., vol. 23, no. 5, p. 694-704. https://doi.org/10.1359/jbmr.080202 PMid:18433303
Ricqlés, A. J. de, Meunier, F. J., Castanet, J., Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Hall, B. K. (ed.): Bone 3, Bone Matrix and Bone Specific Products. Boca Raton: CRC Press, p. 1-78. ISBN 0-8493-8823-6.
Salehi, M., Jafari, M., Moqadam, M. S., Salimian, M., Asghari, A. R., Nateghi, M., Abasnejad, M., Haggholamali, M. 2009. The effect of diazinon on rat brain antioxidant system. Toxicol. Lett., vol. 189S, p. 123S. https://doi.org/10.1016/j.toxlet.2009.06.424
Seeman, E. 2008. Bone quality: the material and structural basis of bone strength. J. Bone Miner. Metab., vol. 26, no. 1, p. 1-8. https://doi.org/10.1007/s00774-007-0793-5 PMid:18095057
Smith, S. S., Reyes, J. R., Arbon, K. S., Harvey, W. A., Hunt, L. M., Heggland, S. J. 2009. Cadmium-induced decrease in RUNX2 mRNA expression and recovery by the antioxidant N-acetylcysteine (NAC) in the human osteoblast-like cell line, Saos-2. Toxicol. Vitro., vol. 23, no. 1, p. 60-66. https://doi.org/10.1016/j.tiv.2008.10.011 PMid:19017541
Srinivasan, R., Ramprasath, C. 2011. Protective role of silibinin in cadmium induced changes of acetylcholinesterase, ATPases and oxidative stress in brain of albino wistar rats. J. Ecobiotechnol., vol. 3, p. 34-39.
Toman, R., Adamkovičová, M., Hluchý, S., Cabaj, M., Golian, J. 2011. Quantitative analysis of the rat testes after an acute cadmium and diazinon administration. Animal Sci. Biotech., vol. 44, no. 2, p. 188-191. http://spasb.ro/index.php/spasb/article/view/638
Toman, R., Hluchý, S., Golian, J., Cabaj, M., Adamkovičová, M. 2012. Diazinon and cadmium neurotoxicity in rats after an experimental administration. Scientific Papers: Animal Science and Biotechnologies, vol. 45, no. 2, p. 137-141. http://spasb.ro/index.php/spasb/article/view/334
Wang H., Zhu, G., Shi, Y., Weng, S., Jin, T., Kong, Q., Nordberg, G. F. 2003. Influence of environmental cadmium exposure on forearm bone density. J. Bone Miner. Res., vol. 18, no. 3, p. 553-560. https://doi.org/10.1359/jbmr.2003.18.3.553 PMid:12619941
WHO: Environmental Health Criteria 134, Cadmium. Geneva: IPCS; 1992.
Wilson, A. K., Cerny, E. A., Smith, B. D., Wagh, A., Bhattacharyya, M. H. 1996. Effects of cadmium on osteoclast formation and activity in vitro. Toxicol. Appl. Pharmacol., vol. 140, no. 2, p. 451-460. https://doi.org/10.1006/taap.1996.0242 PMid:8887463
Wyttenbach, C. R., Hwang, J. D. 1984. Relationship between insecticide-induced short and wry neck and cervical defects visible histologically shortly after treatment of chick embryos. J. Exp. Zool., vol. 229, no. 3, p. 437-446. https://doi.org/10.1002/jez.1402290311 PMid:6707597
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).