Histological analysis of femoral bones in rabbits administered by amygdalin

Authors

  • Veronika Kováčová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Radoslav Omelka Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Anna Šarocká Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Patrik Šranko Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Mária Adamkovičová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Róbert Toman Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Veterinary Sciences, 949 76 Nitra
  • Marek Halenár Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, 949 76 Nitra
  • Adriana Kolesárová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, 949 76 Nitra
  • Monika Martiniaková Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra

DOI:

https://doi.org/10.5219/625

Keywords:

amygdalin, femoral bone, rabbit, histomorphometry

Abstract

Cyanogenic glycosides are present in several economically important plant foods. Amygdalin, one of the most common cyanoglucoside, can be found abundantly in the seeds of apples, bitter almonds, apricots, peaches, various beans, cereals, cassava and sorghum. Amygdalin has been used for the treatment of cancer, it shows killing effects on cancer cells by release of cyanide. However, its effect on bone structure has not been investigated to date. Therefore, the objective of this study was to determine a possible effect of amygdalin application on femoral bone microstructure in adult rabbits. Four month old rabbits were randomly divided into two groups of three animals each. Rabbits from E group received amygdalin intramuscularly at a dose 0.6 mg.kg-1 body weight (bw) (group E, n = 3) one time per day during 28 days. The second group of rabbits without amygdalin supplementation served as a control (group C, n = 3). After 28 days, histological structure of femoral bones in both groups of rabbits was analysed and compared. Rabbits from E group displayed different microstructure in middle part of the compact bone and near endosteal bone surface. For endosteal border, an absence of the primary vascular longitudinal bone tissue was typical. This part of the bone was formed by irregular Haversian and/or by dense Haversian bone tissues. In the middle part of substantia compacta, primary vascular longitudinal bone tissue was observed. Cortical bone thickness did not change between rabbits from E and C groups. However, rabbits from E group had a significantly lower values of primary osteons' vascular canals and secondary osteons as compared to the C group. On the other hand, all measured parameters of Haversian canals did not differ between rabbits from both groups. Our results demonstrate that intramuscular application of amygdalin at the dose used in our study affects femoral bone microstructure in rabbits.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdel-Rahman, M. K. 2011. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats? Lipids in Health and Disease, vol. 10, no. 114, p. 1-10. https://doi.org/10.1186/1476-511X-10-114 DOI: https://doi.org/10.1186/1476-511X-10-114

Alagiakrishnan, K., Juby, A., Hanley, D., Tymchak, W., Sclater, A. 2003. Role of Vascular Factors in Osteoporosis. The Journal of Gerontology. Series A, Biological Sciences and Medical Sciences, vol. 58, no. 4, p. 362-366. https://doi.org/10.1093/gerona/58.4.M362 PMid: 12663699 DOI: https://doi.org/10.1093/gerona/58.4.M362

Arai, M., Shibata, Y., Pugdee, K., Abiko, Y., Ogata, Y. 2007. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. UIBMB Life, vol. 59, no. 1. p. 27-33. https://doi.org/10.1080/15216540601156188 PMid: 17365177 DOI: https://doi.org/10.1080/15216540601156188

Arakaki, N., Yamashita, A., Niimi, S., Yamazaki, T. 2013. Involvement of reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells accompanied by mitochondrial morphological dynamics. Biomedical Research, vol. 34, no. 3, p. 161-166. https://doi.org/10.2220/biomedres.34.161 PMid: 23782750 DOI: https://doi.org/10.2220/biomedres.34.161

Arnett, T. R. 2010. Acidosis, hypoxia and bone. Archives of Biochemistry and Biophysics, vol. 503, no. 1, p. 103-109. https://doi.org/10.1016/j.abb.2010.07.021 DOI: https://doi.org/10.1016/j.abb.2010.07.021

Baek, K. H., Oh, K. W., Lee W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., Rhee, E. J., Han, J. H., Song, K. H., Cha, B. Y., Lee, K. W., Kang, M. I. 2010. Association of Oxidative Stress with Postmenopausal Osteoporosis and the Effects of Hydrogen Peroxide on Osteoclast Formation in Human Bone Marrow Cell Culture. Calcified Tissue International, vol. 87, no. 3, p. 226-235. https://doi.org/10.1007/s00223-010-9393-9 PMid: 20614110 DOI: https://doi.org/10.1007/s00223-010-9393-9

Bai, X., Lu, D., Bai, J., Zheng, H., Ke, Z., Li, X., Luo, S. 2004. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochemical and Biophysical Research Communications, vol. 314, no. 1, p. 197-207. https://doi.org/10.1016/j.bbrc.2003.12.073 PMid: 14715266 DOI: https://doi.org/10.1016/j.bbrc.2003.12.073

Baum, M., Moe, O. W. 2008. Glucocorticoid-Mediated Hypertension: Does the Vascular Smooth Muscle Hold All the Answers? Journal of the American Society of Nephrology, vol. 19, no. 7, p. 1251-1253. https://doi.org/10.1681/ASN.2008040410 PMid: 18508960 DOI: https://doi.org/10.1681/ASN.2008040410

Berecek, K. H., Bohr, D. F. 1978. Whole Body Vascular Reactivity during the Development of Deoxycorticosterone Acetate Hypertension in the Pig. Circulation Research, vol. 42, no. 6, p. 764-771. https://doi.org/10.1161/01.RES.42.6.764 PMid: 657435 DOI: https://doi.org/10.1161/01.RES.42.6.764

Blaheta, R. A., Nelson, K., Haferkamp, A., Juengel, E. 2016. Amygdalin, quackery or cure? Phytomedicine, vol. 23, no. 4, p. 367-376. https://doi.org/10.1016/j.phymed.2016.02.004 DOI: https://doi.org/10.1016/j.phymed.2016.02.004

Bolarinwa, I. F., Orfila, C., Morgan, M. R. A. 2014. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, vol. 152, p. 133-139. https://doi.org/10.1016/j.foodchem.2013.11.002 PMid: 24444917 DOI: https://doi.org/10.1016/j.foodchem.2013.11.002

Bolarinwa, I. F., Orfila, C., Morgan, M. R. A. 2015. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chemistry, vol. 170, p. 437-442. https://doi.org/10.1016/j.foodchem.2014.08.083 PMid: 25306368 DOI: https://doi.org/10.1016/j.foodchem.2014.08.083

Bosetti, M., Zanardi, L., Hench, L., Cannas, M. 2003. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. Journal of Biomedical Materials Research part A, vol. 64, no. 1, p. 189-195. https://doi.org/10.1002/jbm.a.10415 PMid: 12483713 DOI: https://doi.org/10.1002/jbm.a.10415

Buchwald, T., Kozielski, M., Szybowicz, M. 2012. Determination of Collagen Fibers Arrangement in Bone Tissue by Using Transformations of Raman Spectra Maps. Spectroscopy: An International Journal, vol. 27, no. 2, p. 107-117. https://doi.org/10.1155/2012/261487 DOI: https://doi.org/10.1155/2012/261487

Chang, H. K., Shin, M. S., Yang, H. Y., Lee, J. W., Kim, Y. S., Lee, M. H., Kim, J., Kim, K. H., Kim, C. J. 2006. Amygdalin Induces Apoptosis through Regulation of Bax and Bcl-2 Expressions in Human DU145 and LNCaP Prostate Cancer Cells. Biological and Pharmaceutical Bulletin, vol. 29, no. 8, p. 1597-1602. https://doi.org/10.1248/bpb.29.1597 PMid: 16880611 DOI: https://doi.org/10.1248/bpb.29.1597

Chang, J., Jackson, S. G., Wardale, J., Jones, S. W. 2014. Hypoxia Modulates the Phenotype of Osteoblasts Isolated From Knee Osteoarthritis Patients, Leading to Undermineralized Bone Nodule Formation. Arthritis and Rheumathology, vol. 66, no. 7, p. 1789-1799. https://doi.org/10.1002/art.38403 PMid: 24574272 DOI: https://doi.org/10.1002/art.38403

Cheng Y., Yang, C., Zhao, J., Tse, H. F., Ring, J. 2015. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. The Journal of Nutritional Biochemistry, vol. 26, no. 2, p. 146-154. https://doi.org/10.1016/j.jnutbio.2014.09.012 PMid:25465157 DOI: https://doi.org/10.1016/j.jnutbio.2014.09.012

Chenu, C., Marenzana, M. 2005. Sympathetic nervous system and bone remodeling. Joint Bone Spine, vol. 72, no. 6, p. 481-483. https://doi.org/10.1016/j.jbspin.2005.10.007 DOI: https://doi.org/10.1016/j.jbspin.2005.10.007

Currey, J. D. 2002. Bones - Structure and Mechanics United States: Princeton University Press, p. 436. ISBN 9780691128047.

Daya, S., Walker, R. B., Anoopkumar-Dukie, S. 2000. Cyanide-Induced Free Radical Production and Lipid Peroxidation in Rat Homogenate is Reduced by Aspirin. Metabolic Brain Disease, vol. 15, no. 3, p. 203-210. https://doi.org/10.1023/A:1011163725740 PMid: 11206589 DOI: https://doi.org/10.1007/BF02674529

Dylevský, I. 2009. Funkční anatomie. The Functional Anatomy. Praha: Grada Publishing, a. s., p. 544. ISBN 978-80-247-3240-4.

Enlow, D. H., Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues. Part I. Texas Journal of Science, vol. 8, p. 405-412.

Francisco, I. A., Pinotti, M. H. P. 2000. Cyanogenic Glycosides in Plants. Brazilian Archives of Biology and Technology, vol. 43, no. 5, p. 487-492. https://doi.org/10.1590/S1516-89132000000500007 DOI: https://doi.org/10.1590/S1516-89132000000500007

Garrett, I. R., Boyce, B. F., Oreffo, R. O. C., Bonewald, L., Poser, J., Mundy, G. R. 1990. Oxygen-derived Free Radicals Stimulate Osteoclastic Bone Resorption in Rodent Bone In Vitro and In Vivo. The Journal of Clinical Investigation, vol. 85, no. 3, p. 632-639. https://doi.org/10.1172/JCI114485 PMid: 2312718 DOI: https://doi.org/10.1172/JCI114485

Greenlee, D. M., Dunnell, R. C. 2010. Identification of fragmentary bone from the Pacific. Journal of Archaeological Science, vol. 37, no. 5, p. 957-970. https://doi.org/10.1016/j.jas.2009.11.029 DOI: https://doi.org/10.1016/j.jas.2009.11.029

Gunasekar, P. G., Borowitz, J. L., Isom, G. E. 1998. Cyanide-Induced Generation of Oxidative Species: Involvement of Nitric Oxide Synthase and Cyclooxygenase-2. Journal of Pharmacological and Experimental Therapeutics, vol. 285, no. 1, p. 236-241. PMid: 9536016

Guntur, A. R., Rosen, C. J. 2012. Bone as an endocrine organ. Endocrine Practice, vol. 18, no. 5, p. 758-762. https://doi.org/10.4158/EP12141.RA PMid: 22784851 DOI: https://doi.org/10.4158/EP12141.RA

Guzik, B., Chwala, M., Matusik, P., Ludew, D., Skiba, D., Wilk, G., Mrowiecki, W., Batko, B., Cencora, A., Kapelak, B., Sadowski, J., Korbut, R., Guzik, T. J. 2011. Mechanisms of increased vascular superoxide production in human varicose veins. Polskie Archiwum Medycyny Wewnnetrznej, vol. 121, no. 9, p. 279-286. PMid: 21860369 DOI: https://doi.org/10.20452/pamw.1075

Halenár, M., Medveďová, M., Maruniaková, N., Kolesárová, A. 2015. Ovarian hormone production affected by amygdalin addition in vitro. Journal of Microbilogy, Biotechnology and Food Sciences, vol. 4, p. 19-22. https://doi.org/10.15414/jmbfs.2015.4.special2.19-22 DOI: https://doi.org/10.15414/jmbfs.2015.4.special2.19-22

Hamel, J. 2011. A Review of Acute Cyanide Poisoning. Critical Care Nurse, vol. 31, no. 1, p. 72-81. https://doi.org/10.4037/ccn2011799 DOI: https://doi.org/10.4037/ccn2011799

He, J. Y., Jiang, L. S., Dai, L. Y. 2011. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Research Reviews, vol. 10, no. 2, p. 253-263. https://doi.org/10.1016/j.arr.2011.01.002 PMid: 21262391 DOI: https://doi.org/10.1016/j.arr.2011.01.002

He, J. Y., Zheng, X. F., Jiang, S. D., Chen, X. D., Jiang, L. S. 2013. Sympathetic neuron can promote osteoblast differentiation through BMP signaling pathway. Cellular Signalling, vol. 25, no. 6, p. 1372-1378. https://doi.org/10.1016/j.cellsig.2013.02.016 PMid: 23454096 DOI: https://doi.org/10.1016/j.cellsig.2013.02.016

Henry, P. D. 1985. Atherosclerosis, calcium, and calcium antagonists. Circulation, vol. 72, no. 3, p. 456-459. https://doi.org/10.1161/01.CIR.72.3.456 PMid: 3893790 DOI: https://doi.org/10.1161/01.CIR.72.3.456

Knowles, H. J., Athanasou, N. A. 2009. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. Journal of Pathology, vol. 218, p. 256-264. https://doi.org/10.1002/path.2534 PMid: 19291710 DOI: https://doi.org/10.1002/path.2534

Kolesár, E., Halenár, M., Kolesárová, A., Massányi, P. 2015. Natural plant toxicant - cyanogenic glycoside amygdalin: characteristic, metabolism and the effect on animal reproduction. Journal of Microbilogy, Biotechnology and Food Sciences, vol. 4, p. 49-50. https://doi.org/10.15414/jmbfs.2015.4.special2.49-50 DOI: https://doi.org/10.15414/jmbfs.2015.4.special2.49-50

Marenzana, M., Chenu, C. 2008. Sympathetic nervous system and bone adaptive response to its mechanical environment. Journal of Musculoskeletal and Neuronal Interactions, vol. 8, no. 2, p. 111-120. PMid: 18622080

Martiniaková, M., Vondráková, M., Fabiš, M. 2003. Investigation of the microscopic structure of rabbit compact bone tissue. Scripta medica (Brno), vol. 76, no. 4, p. 215-220.

Martiniaková, M., Omelka, R., Grosskopf, B., Sirotkin, A. V., Chrenek, P. 2008. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Veterinaria Scandinavica, vol. 50, p. 15. https://doi.org/10.1186/1751-0147-50-15 PMid:18522730 DOI: https://doi.org/10.1186/1751-0147-50-15

Martiniaková, M., Omelka, R., Grosskopf, B., Chovancová, H., Massányi, P., Chrenek, P. 2009. Effects of dietary supplementation of nickel and nickel-zinc on femoral bone structure in rabbits. Acta Veterinaria Scandinavica, vol. 50, p. 15. https://doi.org/10.1186/1751-0147-51-52 PMid: 20003522 DOI: https://doi.org/10.1186/1751-0147-51-52

Martiniaková, M., Omelka, R., Jančová, A., Stawarz, R., Formicki, G. 2010. Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia. Environmental Monitoring Assessment, vol. 171, no. 1-4, p. 651-660. https://doi.org/10.1007/s10661-010-1310-1 PMid: 20135219 DOI: https://doi.org/10.1007/s10661-010-1310-1

Martiniaková, M., Chovancová, H., Boboňová, I., Omelka, R. 2013a. Účinky rizikových látok na štruktúru kostného tkaniva potkanov. Nitra: Fakulta prírodných vied UKF, p. 187. ISBN 978-80-558-0295-4.Martiniaková, M., Boboňová, I., Omelka, R., Grosskopf, B., Chovancová, H., Španková, J., Toman, R. 2013b. Simultaneous subchronic exposure to selenium and diazinon as possible risk factor for osteoporosis in adult male rats. Acta Veterinaria Scandinavica, vol. 55, p. 8. https://doi.org/10.1186/1751-0147-55-81 PMid: 24237628 DOI: https://doi.org/10.1186/1751-0147-55-81

Mody, N., Parhami, F., Sarafian, T. A., Demer, L. L. 2001. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radical Biology and Medicine, vol. 31, no. 4, p. 509-519. https://doi.org/10.1016/S0891-5849(01)00610-4 PMid: 11498284 DOI: https://doi.org/10.1016/S0891-5849(01)00610-4

Orimo, H., Ouchi, Y. 1990. The role of calcium and magnesium in the development of atherosclerosis. Experimental and clinical evidence. Annals of the New York Academy of Sciences, vol. 598, p. 444-457. https://doi.org/10.1111/j.1749-6632.1990.tb42315.x PMid: 2248457 DOI: https://doi.org/10.1111/j.1749-6632.1990.tb42315.x

Patntirapong, S., Hauschka, P. V. 2007. Molecular Regulation of Bone Resorption by Hypoxia. Orthopaedic Journal, Harvard Medical School, p. 72-75.

Ponticelli, C., Glassock, R. J. 2009. In: Treatment of Primary Glomerulonephritis. New York: Oxfort University Press, p. 481. ISBN 978-0-19-955288-7. https://doi.org/10.1093/med/9780199552887.001.0001 DOI: https://doi.org/10.1093/med/9780199552887.001.0001

Ricqlès, A. J., Meunier, F. J., Castanet, J., Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Bone 3, Bone Matrix and Bone Specific Products. Hall BK. Boca Raton: CRC Press; p. 1-78. ISBN 0-8493-8823-6.

Saruta, T. 1996. Mechanism of Glucocorticoid-Induced Hypertension. Hypertension Researcg, vol. 19, no. 1, p. 1-8. https://doi.org/10.1291/hypres.19.1 PMid: 8829818 DOI: https://doi.org/10.1291/hypres.19.1

Shou, Y., Gunasekar, P. G., Borowitz, J. L., Isom, G. E. 2000. Cyanide-induced apoptosis involves oxidative-stress-activated NF-kappaB in cortical neurons. Toxicology and Applied Pharmacology, vol. 164, no. 2, p. 196-205. https://doi.org/10.1006/taap.2000.8900 PMid: 10764633 DOI: https://doi.org/10.1006/taap.2000.8900

Song, Z., Xu, X. 2014. Advanced research on anti-tumor effects of amygdalin. Journal of Cancer Research and Therapeutics, vol. 10, suppl. no. 1, p. 3-7. https://doi.org/10.4103/0973-1482.139743 PMid: 25207888 DOI: https://doi.org/10.4103/0973-1482.139743

Speijers, G. 1993. Cyanogenic glycosides. WHO Food Additives Series 30. Geneva. JECFA.

Szulc, P., Seeman, E., Duboeuf, F., Sornay-Rendu, E., Delmas, P. D. 2006. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. Journal of Bone and Mineral Research, vol. 21, no. 12, p. 1856-1863. https://doi.org/10.1359/jbmr.060904 DOI: https://doi.org/10.1359/jbmr.060904

Tewe, O. O., Maner, J. H. 1980. Cyanide, protein and iodine interactions in the performance, metabolism and pathology of pigs. Research in Veterinary Science, vol. 29, no. 3, p. 271-276. PMid: 7255888 DOI: https://doi.org/10.1016/S0034-5288(18)32626-2

Ullian, M. E. 1999. The role of corticosteroids in the regulation of vascular tone. Cardiovascular Research, vol. 41, no. 1, p. 55-64. https://doi.org/10.1016/S0008-6363(98)00230-2 DOI: https://doi.org/10.1016/S0008-6363(98)00230-2

Vetter, J. 2000. Plant cyanogenic glycosides. Toxicon, vol. 38, no. 1, p. 11-36. https://doi.org/10.1016/S0041-0101(99)00128-2 PMid: 10669009 DOI: https://doi.org/10.1016/S0041-0101(99)00128-2

Wang, Y., Zhao, L., Wang, Y., Xu, J., Nie, Y., Guo, Y., Tong, Y., Qin, L., Zhang, Q. 2012. Curculigoside isolated from Curculigo orchioides prevents hydrogen peroxide-induced dysfunction and oxidative damage in calvarial osteoblasts. Acta Biochimica et Biophysica Sinica (Shanghai), vol. 44, no. 5, p. 431-441. https://doi.org/10.1093/abbs/gms014 PMid: 22427460 DOI: https://doi.org/10.1093/abbs/gms014

Waypa, G. B., Chandel, N. S., Schumacker, P. T. 2001. Model for Hypoxic Pulmonary Vasoconstriction Involving Mitochondrial Oxygen Sensing. Circulation Research, vol. 88, no. 12, p. 1259-1266. https://doi.org/10.1161/hh1201.091960 PMid: 11420302 DOI: https://doi.org/10.1161/hh1201.091960

Weir, E. K., Archer, S. L. 1995. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. Federation of American Societies for Experimental Biology Journal, vol. 9, no. 2, p. 183-189. PMid: 7781921 DOI: https://doi.org/10.1096/fasebj.9.2.7781921

Yang, C., Li, X., Rong, J. 2014. Amygdalin isolated from Semen Persicae (Tao Ren) extracts induces the expression of follistatin in HepG2 and C2C12 cell lines. Chinese Medicine, vol. 9, p. 1-8. https://doi.org/10.1186/1749-8546-9-23 PMid: 25237385 DOI: https://doi.org/10.1186/1749-8546-9-23

Yarema, T. C., Yost, S. 2011. Low-Dose Corticosteroids to Treat Septic Shock: A critical Literature Review. Critical Care Nurse, vol. 31, no. 6, p. 16-26. https://doi.org/10.4037/ccn2011551 PMid: 22135328 DOI: https://doi.org/10.4037/ccn2011551

Yildirim, F. A., Askin, M. A. 2010. Variability of amygdalin content in seeds of sweet and bitter apricot cultivars in Turkey. Africal Journal of Biotechnology, vol. 9, no. 39, p. 6522-6524.

Zhou, C., Qian, L., Ma, H., Yu, X., Zhang, Y., Qu, W., Zhang, X., Xia, W. 2012. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydrate Polymers, vol. 90, no. 1, p. 516-523. https://doi.org/10.1016/j.carbpol.2012.05.073 PMid: 24751072 DOI: https://doi.org/10.1016/j.carbpol.2012.05.073

Downloads

Published

2016-07-05

How to Cite

Kováčová, V. ., Omelka, R. ., Šarocká, A. ., Šranko, P. ., Adamkovičová, M. ., Toman, R. ., Halenár, M. ., Kolesárová, A. ., & Martiniaková, M. . (2016). Histological analysis of femoral bones in rabbits administered by amygdalin. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 393–399. https://doi.org/10.5219/625

Most read articles by the same author(s)

1 2 > >>