Occurrence of selected metals in feed and sheep´s milk from areas with different environmental burden
DOI:
https://doi.org/10.5219/920Keywords:
sheep's milk, toxic metal, essential element, feed, environmentAbstract
The content of selected essential elements and toxic metals in feed and sheep's milk from areas with different parts of Slovak Republic was analyzed. Region of Novoť (undisturbed environment; North Slovakia) and region of Klátova Nová Ves (widely disturbed environment; Western Slovakia) were under investigation. Eleven metals have been analyzed (essential elements - calcium, zinc, selenium, iron, magnesium, copper; toxic elements - arsenic, mercury, lead, cadmium, nickel). Samples of feeds and milk were collected five-times during the year (spring and autumn season). Analyses of samples were performed by certified testing laboratory Eurofins Bel/Novamann (Nové Zámky, Slovak Republic). Analyses were performed by routine methods, according to the valid methodologies. The results showed significantly higher content of selected essential elements in feed in spring season from area with widely disturbed environment (Klátova Nová Ves). Significantly higher content of essential elements in milk was on farm of Novoť (undisturbed environment). Occurrence of toxic metals in feed from area with widely disturbed environment in spring season did not affect their content in milk. It can be concluded, that the use of milk of sheep from these areas for direct use or for dairy products processing is appropriate, safe and poses no health risk for the consumers.Downloads
References
Al-Wabel, N. M. 2008. Mineral contents of milk of cattle, camels, goats and sheep in the central region of Saudi Arabia. Asian Journal of Biochemistry, vol. 3, no. 6, p. 373-375. https://doi.org/10.3923/ajb.2008.373.375
Anastasio, A., Caggiano, R., Macchiato, M., Catellani, P., Ragosta, M., Paino, S., Cortes, M. L. 2006. Heavy metal concentrations in dairy products from sheep milk collected in two regions of Southern Italy. Acta Veterinaria Scandinavica, vol. 47, no. 1, p. 69-74. https://doi.org/10.1186/1751-0147-47-69 PMid:16722307
Ayar, A., Sert, D., Akin, N. 2009. The trace metal levels in milk and dairy products consumed in middle Anatolia - Turkey. Environmental Monitoring and Assessment, vol. 152, no. 1-4, p. 1-12. https://doi.org/10.1007/s10661-008-0291-9 PMid:18478348
Bilandžić, N., Dokić, M., Sedak, M, Solomun, M., Varenina, I., Knežević, Z., Benić, M. 2011. Trace element levels in raw milk from northern and southern region of Croatia. Food Chemistry, vol. 127, no. 1, p. 63-66. https://doi.org/10.1016/j.foodchem.2010.12.084
Bushra, I., Saatea, A., Samina, S., Riaz, K. 2014. Assessment of toxic metals in dairy milk and animal feed in Peshawar, Pakistan. British Biotechnology Journal, vol. 4, no. 8, p. 883-893. https://doi.org/10.9734/BBJ/2014/9939
Cashman, K. D. 2011. Trace elements, nutritional significance. In Fuquay, J. W. et al. Encyclopedia of dairy science. 2nd ed. Mississippi, USA : Mississippi State University. 4170 p. ISBN 978-0-12-374407-4.
Codex Allimentarius Commission. 2011. Report of the 50th Session of the Codex Committee on Food Additives and Contaminants. Codex Allimentarius Commission, Hague.
Coni, E., Bocca, A., Coppolelli, P., Caroli, S., Cavallucci, C., Marinucci Trabalaza, M. 1996. Minor and trace element content in sheep and goat milk and dairy products. Food Chemistry, vol. 57, no. 2, p. 253-260. https://doi.org/10.1016/0308-8146(95)00216-2
Dobrzański, Z., Kolacz, R., Górecka, H., Chojnacka, K., Bartkowiak, A. 2005. The content of microelements and trace elements in raw milk from cows in the Silesian region. Polish Journal of Environmental Studies, vol. 14, no. 5, p. 685-689.
Forgacs, Z., Nemethy, Z., Revesz, C. S., Lazar, P. 2001. Specific amino acids moderate effects on Ni2+ on the testosterone production of mouse Leydig cells in vitro. Journal of Toxicology and Environmental Health, vol. 62, no. 5, p. 349-358. https://doi.org/10.1080/152873901300018075 PMid:11261897
Herwing, N., Stephen, K., Panne, U., Pritzkow, W., Vogl, J. 2011. Multielement screening in milk and feed by SF-ICP-MS. Food Chemistry, vol. 124, no. 3, p. 223-1230.
Hilali, M., El-Mayda, E., Rischkowsky, B. 2011. Characteristic and utilization of sheep and goat milk in the Middle East. Small Ruminant Research, vol. 101, no.1-3, p. 274-278. https://doi.org/10.1016/j.smallrumres.2011.09.029
Chovancová, H., Omelka, R., Baboňová, I., Formicki, G., Toman, R., Martiniaková, M. 2014. Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats. Potravinarstvo, vol. 8, no. 1, p. 107-113. https://doi.org/10.5219/343
Issa, S. Y., Genema, D. M., Mazrouna, M. K. A., Rahman, S. M. A., Fawzi, M. M. 2016. Determination of some metals in the commonly consumed dairy products randomly collected from the market in Alexandria-Egypt, with an emphasis on toxicity, permissible limits and risk assessment. International Journal of Pharmacology and Toxicology, vol. 4, no. 2, p. 133-137. https://doi.org/10.14419/ijpt.v4i2.6288
Kapila, R., Kavadi, P. K., Kapila, S. 2013. Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Ruminant Research, vol. 112, no. 1-3, p. 191-198. https://doi.org/10.1016/j.smallrumres.2012.11.028
Kazi, T. G., Jalbani, N., Baig, J. A. 2009. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer. Food Chemical and Toxicology, vol. 47, no. 9, p. 2163-2169. https://doi.org/10.1016/j.fct.2009.05.035 PMid:19500636
Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., Zhu, Y. G. 2008. Health risks of heavy metals in contaminated soils of food crops irrigated with wastewater in Beijing, China. Environmental Pollution, vol. 152, no. 3, p. 656-692. https://doi.org/10.1016/j.envpol.2007.06.056 PMid:17720286
Komperej, A., Drobnič, M., Kompan, D. 1999. Milk yield and milk traits in Slovenian sheep breeds. Acta Agraria Kaposváriensis, vol. 3, no. 2, p. 97-106.
Kukner, A., Colakoglu, N., Kara, H., Oner, H., Ozogul, C., Ozan, E. 2007. Ultrastructural changes in the kidney of rats with acute exposure to cadmium and effects of exogenous metallothionein. Journal of Biology and Trace Elements, vol. 119, no. 2, p. 137-146. https://doi.org/10.1007/s12011-007-0049-1 PMid:17916937
Licata, P., Di Bella, G., Potorti, A. G., Lo Turco, V., Salvo, A., Dugo, G. 2012. Determination of trace elements in goat and ovine milk from Calabria (Italy) by ICP-AES. Food Additives & Contaminants Part B, vol. 5, no. 4, p. 268-271. https://doi.org/10.1080/19393210.2012.705335 PMid:24786408
Licata, P., Trombetta, D., Cristani, M., Giofre, F., Martino, D., Calo, M., Naccari, F. 2004. Levels of „toxic" and „essential" metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environment International, vol. 30, no. 1, p. 1-6. https://doi.org/10.1016/S0160-4120(03)00139-9
Llobet, J. M., Falcó, G., Casas, C., Teixidó, A., Domingo, J. L. 2003. Concentrations of arsenic, cadmium, mercury and lead in common foods and estimated daily intake by children, adults and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, vol. 51, no. 3, p. 838-842. https://doi.org/10.1021/jf020734q PMid:12537467
Lukáč, N., Massányi, P., Kročková, J., Toman, R., Danko, J., Stawarz, R., Formicki, G. 2014. Effect of Nickel on Male Reproduction. Universal Journal of Agricultural Research, vol. 2, no. 7, p. 250-252.
Lukačínová, A., Nováková, J., Lovásová, E., Cimboláková, I., Ništiar, F. 2012. Influence of lifetime exposure of sublethal doses of cadmium to selected parameters of carbohydrate metabolism. Potravinarstvo, vol. 6, no. 12, p. 36-40. https://doi.org/10.5219/231
Mass, S., Lucot, E., Gimbert, F., Crini, N., Badot, P. M. 2011. Trace metals in raw cow´s milk and assessment of transfer to Comté cheese. Food Chemistry, vol. 129, no. 1, p. 7-12. https://doi.org/10.1016/j.foodchem.2010.09.034
Massányi, P., Lukáč, N., Uhrín, V., Toman, R., Pivko, J., Rafay, J., Forgács, Z. S., Somosy, Z. 2007. Female reproductive toxicology of cadmium. Acta Biologica Hungarica, vol. 58, no. 3, p. 287-299. https://doi.org/10.1556/ABiol.58.2007.3.5 PMid:17899786
Medico, O., Tarallo, M., Pompa, C., Chiaravalle, A. E. 2016. Trace elements in sheep and goat milk samples from Apulia and Basilicata regions (Italy): Valuation by multivariate data analysis. Small Ruminant Research, vol. 135, p. 60-65. https://doi.org/10.1016/j.smallrumres.2015.12.019
Najarnezhad, V., Akbarabadi, M. 2013. Heavy metals in raw cow and ewe milk from north-east Iran. Food Additives & Contaminants: Part B, vol. 6, no. 3, p. 158-162. https://doi.org/10.1080/19393210.2013.777799 PMid:24779898
Pandey, R., Srivastava, S. P. 2000. Spermatotoxic effects on nickel in mice. Bulletin of Environmental Contamination and Toxicology, vol. 64, no. 2, p. 161-167. https://doi.org/10.1007/s001289910025 PMid:10656880
Radwińska, J., Žarczyńska, K. 2014. Effects of mineral deficiency on the health of young ruminants. Journal of Elementology, vol. 3, no. 19, p. 915-928.
Rahimi, E. 2013. Lead and cadmium concentrations in raw milk collected from different regions of Iran. Food Chemistry, vol. 136, no. 2, p. 389-391. https://doi.org/10.1016/j.foodchem.2012.09.016 PMid:23122075
Sanal, H., Guler, Z., Park, Y. W. 2011. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, torbayoghurt and whey. Food Additives & Contaminants: Part B, vol. 4, no. 4, p. 275-281. https://doi.org/10.1080/19393210.2011.617520 PMid:24786251
Sanz Ceballos, l., Ramos Morales, E., de la Torre Adarve, G., Diaz Castro, J., Perz Martinez, L., Sanz Sampelayou, M. R. 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, vol. 22, no. 4, p. 322-329. https://doi.org/10.1016/j.jfca.2008.10.020
Simsek, O., Gültekin, R., Öksüz, O., Kurulatay, S. 2000. The effect of environmental pollution on the heavy metal content of raw milk. Nahrung, vol. 44, no. 5, p. 360-363. https://doi.org/10.1002/1521-3803(20001001)44:5<360::AID-FOOD360>3.0.CO;2-G
Tahir, M., Iqbal, M., Abbs, M., Tahir, M. A., Nazir, A., Iqbal, D. N., Kanwal, O., Hassan, F.,Younas, U. 2017. Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecologica Sinica, vol. 37, no. 3, p. 207-212. https://doi.org/10.1016/j.chnaes.2016.10.007
Tajkarimi M., Ahmadi F. M., Poursoltani H., Nejad, A. S., Motallebi, A. A., Mohdavi, H. 2008. Lead residue levels in raw milk from different regions of Iran. Food Control. vol. 19, no. 5, p. 495-498. https://doi.org/10.1016/j.foodcont.2007.05.015
Temiz, H., Soylu, A. 2012. Heavy metal concentrations in raw milk collected from different regions of Samsun, Turkey. International Journal of Dairy Technology, vol. 65, no. 4, p. 1-6. https://doi.org/10.1111/j.1471-0307.2012.00846.x
Tkáč, P., Kozáková, Ľ., Vaľková, M., Zeleňák, F. 2008. Heavy metals in soils in middle Spiš. Acta Montanistica Slovaca, vol. 13, no. 1, p. 82-86.
Toman, R., Tunegová, M. 2017. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure. Potravinarstvo Slovak Journal of Food Science, vol. 11, no. 1, p. 718-724. https://doi.org/10.5219/827
Tomáš, J., Hronec, O. 2007. Soil and Plant Damage by Human Activities (Poškodzovanie pôd a rastlín ľudskými činnosťami). Nitra, Slovakia : Slovak University of Agriculture in Nitra. p. 62-76. ISBN 978-80-8069-902-4.
Tunegová, M., Toman, R., Tančin, V. 2016. Monitoring of selected essential elements and contaminants at sheep and cow farms in Eastern Slovakia. Journal of Central European Agriculture, vol. 17, no. 4, p. 1221-1232. https://doi.org/10.5513/JCEA01/17.4.1834
WHO - World Health Organization. 2007. Health risk of heavy metals form long-range transboundary air pollution [online] s.a [cit. 2018-02-08] Available at: http://www.euro.who.int/__data/assets/pdf_file/0007/78649/E91044.pdf.
Zhou, X., Qu, X., Zhao, S., Wang, J., Li, S., Zheng, N. 2017. Analysis of 22 Elements in Milk, Feed, and Water of Dairy Cow, Goat and Buffalo from different Regions of China. Biology Trace Elements Research, vol. 176, no.1, p. 120-129. https://doi.org/10.1007/s12011-016-0819-8 PMid:27550154
Zhuang, P., McBride, M. B., Xia, H., Li, N., Li, Z. 2009. Health risk of heavy metals via consumption of food crops in the vicinity of Babaoshan mine, South China. The Science of the Total Environment, vol. 407, no. 5, p. 1551-1561. https://doi.org/10.1016/j.scitotenv.2008.10.061 PMid:19068266
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).