Quercetin-induced changes in femoral bone microstructure of adult male rabbits


  • Ramona Babosová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Radoslav Omelka Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Hana Ďúranová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Veronika Kováčová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Martina Lukáčová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Marcela Capcarová Slovak University of Agriculture in Nitra, Department of Animal Physiology, 949 76 Nitra
  • Monika Martiniaková Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra




quercetin, femoral bone, histomorphometry, rabbit


Flavonoids are a group of plant metabolites with antioxidant effects. One of the most abundant flavonoids in the human diet is quercetin. It is found widely in fruits, vegetables and has a lot of beneficial effects on human health. Quercetin has a positive pharmacological effect on bone metabolism and it prevents the organism against bone loss. However, its impact on the size of basic structural units of the compact bone is still unknown. Therefore, the aim of present study was to investigate the impact of the quercetin on femoral bone microstructure in 5-month-old male rabbits. Five rabbits of Californian broiler line were randomly divided into two groups. In the experimental group (E group; n=3), animals were intramuscularly injected with quercetin at dose 1000 μg.kg-1 body weight (bw) for 90 days, 3 times per week. Two rabbits without quercetin administration served as a control group (C group). According to our results, intramuscular application of quercetin had an insignificant effect on cortical bone thickness in male rabbits. In these rabbits, changes in qualitative histological characteristics were present in the middle part of the compacta, where primary vascular longitudinal bone tissue was present and expanded there from the periosteum. Also, a lower number of secondary osteons was found in these animals. From the histomorphometrical point of view, significantly decreased sizes of primary osteons' vascular canals and secondary osteons (p <0.05) were found in rabbits administered by quercetin. Our findings indicate that subchronic administration of quercetin at the dose used in our study had considerable impact on both qualitative and quantitative histological characteristics of the compact bone in adult male rabbits.


Download data is not yet available.


Metrics Loading ...


Aggarwal, B. B., Heber, D. 2014. Immunonutrition: Interactions of diet, genetics, and inflammation. Boca Raton: CRC Press. p. 53-84. ISBN 9781466503854. DOI: https://doi.org/10.1201/b16661

Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., Payrastre, B. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol., vol. 53, p. 1649-1657. https://doi.org/10.1016/S0006-2952(97)82453-7 DOI: https://doi.org/10.1016/S0006-2952(97)82453-7

Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., Rhee, E. J., Han, J. H., Song, K. H., Cha, B. Y., Lee, K. W., Kang, M. I. 2010. Association of oxidative stress with postmenopausal osteoporosis and the effect of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int., vol. 87, p. 226-235. https://doi.org/10.1007/s00223-010-9393-9 DOI: https://doi.org/10.1007/s00223-010-9393-9

Boik, J. 2001. Natural Compounds in Cancer Therapy. Oregon Medical Press, Princeton, Minnesota. p. 251-259. ISBN 0-9648280-1-4.

Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., Haenen, G. R. 2007. The quercetin paradox. Toxicol. Appl. Pharmacol., vol. 222, p. 89-96. https://doi.org/10.1016/j.taap.2007.04.004PMID: 17537471 DOI: https://doi.org/10.1016/j.taap.2007.04.004

Braun, K. F., Ehnert, S., Freude, T., Egaña, J. T., Schenck, T. L., Buchholz, A., Schmitt, A., Siebenlist, S., Schyschka, L., Neumaier, M., Stöckle, U., Nussler, A. K. 2011. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1. Scientific World Journal, vol. 11, p. 2348-2357. https://doi.org/10.1100%2F2011%2F471426 DOI: https://doi.org/10.1100/2011/471426

Brookes, P. S., Digerness, S. B., Parks, D. A., Darley-Usmar, V. 2002. Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic. Biol. Med., vol. 32, p. 1220-1228. https://doi.org/10.1016/S0891-5849(02)00839-0 PMID: 12031906 DOI: https://doi.org/10.1016/S0891-5849(02)00839-0

Buss, G. D., Constantin, J., de Lima, L. C., Teodoro, G. R., Comar, J. F., Ishii-Iwamoto, E. L., Bracht, A. 2005. The action of quercetin on the mitochondrial NADH to NAD(+) ratio in the isolated perfused rat liver. Planta Med., vol. 71, p. 1118-1122. https://doi.org/10.1055/s-2005-873174 DOI: https://doi.org/10.1055/s-2005-873174

Carmeliet, P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nat. Med., vol. 6, p. 389-395. https://doi.org/10.1038/74651 PMID: 10742145 DOI: https://doi.org/10.1038/74651

Cirico, T. L., Omaye, S. T. 2005. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem. Toxicol., vol. 44, p. 510-516. https://doi.org/10.1016/j.fct.2005.08.025 DOI: https://doi.org/10.1016/j.fct.2005.08.025

Cassidy, A., O’Reilly, E. J., Kay, C., Sampson, L., Franz M., Forman, J. P., Curhan, G., Rimm, E. B. 2011. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr., vol. 93, p. 338-347. https://doi.org/10.3945%2Fajcn.110.006783 DOI: https://doi.org/10.3945/ajcn.110.006783

Danihelová, M., Šturdík, E. 2011. Flavonoid natural sources and their importance in the human diet. Potravinarstvo, vol. 5, p. 12-24. https://doi.org/10.5219/160 DOI: https://doi.org/10.5219/160

Davis, J. M., Murphy, E. A., Carmichael, M. D., Davis, B. 2009. Quercetin increases brain andmuscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., vol. 296, p. R1071–R1077. https://doi.org/10.1152/ajpregu.90925.2008 DOI: https://doi.org/10.1152/ajpregu.90925.2008

de Ricqlés A. J., Meunier, F. J., Castanet, J., Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Bone 3, Bone Matrix and Bone Specific Products. Hall BK. Bocca Raton: CRC Press, p. 1-78. ISBN 0-8493-8823-6.

Dehghan, G., Khoshkam, Z. 2012. Tin(II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chem., vol. 131, p. 422-426. https://doi.org/10.1016/j.foodchem.2011.08.074 DOI: https://doi.org/10.1016/j.foodchem.2011.08.074

Dylevský, I. 2007. General kinesiology (Obecná kineziologie, In Czech). Praha: Grada Publishing, 192 p. ISBN 978-80-247-1649-7.

Egert, S., Rimbach, G. 2011. Which sources of flavonoids: complex diets or dietary supplements? Adv. Nutr., vol. 2, p. 8-14. https://doi.org/10.3945/​ DOI: https://doi.org/10.3945/an.110.000026

Enlow, D. H., Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissue. Part I. Tex. J. Sci., vol. 8, p. 405-412.

Enlow, D. H., Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissue. Part III. Tex. J. Sci., vol. 10, p. 187-230.

Formica, J. V., Regelson, W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol., vol. 33, p. 1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1 PMID: 8847003 DOI: https://doi.org/10.1016/0278-6915(95)00077-1

Forte, L., Torricelli, P., Boanini, E., Gazzano, M., Rubini, K., Fini, M., Bigi, A. 2016. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater., vol. 1, p. 298-308. https://doi.org/10.1016/j.actbio.2015.12.013 DOI: https://doi.org/10.1016/j.actbio.2015.12.013

Greenlee, D. M., Dunnell, R. C. 2010. Identification of fragmentary bone from the Pacific. J. Arch. Sci., vol. 37, p. 957-970. https://doi.org/10.1016/j.jas.2009.11.029 DOI: https://doi.org/10.1016/j.jas.2009.11.029

Guo, C., Hou, G. Q., Li, X. D., Xia, X., Liu, D. X., Huang, D. Y., Du, S. X. 2012. Quercetin triggers apoptosis of lipopolysaccharide (LPS)-induced osteoclasts and inhibits bone resorption in RAW264.7 cells. Cell Physiol. Biochem. vol. 30, p. 123-136. PMID: 22759961 DOI: https://doi.org/10.1159/000339052

Hagiwara, H., Inoue, A., Yamaguchi, A., Yokose, S., Furuya, M., Tanaka, S., Hirose, S. 1996. cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells. Am. J. Physiol., vol. 270, p. C1311-C1318. PMID: 8967430 DOI: https://doi.org/10.1152/ajpcell.1996.270.5.C1311

Halliwell, B., Gutteridge, J. M., Cross, C. E. 1992. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Med., vol. 119, p. 598-620. PMID: 1593209

Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., Lines, T. C. 2007. A critical review of the data related to the safety of quercetin and lack of evidence of in vitro toxicity including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., vol. 45, no. 11, p. 2179-2205. https://doi.org/10.1016/j.fct.2007.05.015 DOI: https://doi.org/10.1016/j.fct.2007.05.015

Heijnen, C. G., Haenen, G. R., van Acker, F. A., van der Vijgh, W. J., Bast, A. 2001. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol In Vitro, vol. 15, p. 3-6. https://doi.org/10.1016/S0887-2333(00)00053-9 PMID: 11259863 DOI: https://doi.org/10.1016/S0887-2333(00)00053-9

Hooper, L., Cassidy, A. 2006. A review of the health care potential of bioactive compouds. J. Sci. Food Agric., vol. 86, p. 1805-1813. https://doi.org/10.1002/jsfa.2599 DOI: https://doi.org/10.1002/jsfa.2599

Hosokawa, N., Hirayoshi, K., Nakai, A., Hosokawa, Y., Marui, N., Yoshida, M., Sakai, T., Ninoshino, H., Aoike, A., Kawai, K., Nagata, K. 1990. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct., vol. 15, p. 393-401. http://doi.org/10.1247/csf.15.393 DOI: https://doi.org/10.1247/csf.15.393

Hubbard, G. P., Wolffram, S., Lovegrove, J. A., Gibbins, J. M. 2004. Ingestion of quercetin inhibits platelen aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost., vol. 2, p. 2138-2145. https://doi.org/10.1111/j.1538-7836.2004.01067.x DOI: https://doi.org/10.1111/j.1538-7836.2004.01067.x

Chen, C., Zhou, J., Ji, C. 2010. Quercetin: a potential drug to reverse multidrug resistance. Life Sci., vol., 87, p. 333-338. https://doi.org/10.1016/j.lfs.2010.07.004PMID: 20637779 DOI: https://doi.org/10.1016/j.lfs.2010.07.004

Choi, J. A., Kim, J. Y., Lee, J. Y., Kang, C. M., Kwon, H. J., Yoo, Y. D., Kim, T. W., Lee, Y. S., Lee, S. J. 2001. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., vol. 19, p. 837-844. https://doi.org/10.3892/ijo.19.4.837 DOI: https://doi.org/10.3892/ijo.19.4.837

Choi, J. S., Li, X. 2005. Enhanced diltiazem biovailability after oral administration of diltiazem with quercetin to rabbits. Int. J. Pharm., vol. 297, no. 1-2, p. 1-8. https://doi.org/10.1016/j.ijpharm.2004.12.004 DOI: https://doi.org/10.1016/j.ijpharm.2004.12.004

Ishikawa, Y., Kitamura M. 2000. Anti-apoptotic effect of quercetin: Intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int., vol. 58, p. 1078-1087. https://doi.org/10.1046/j.1523-1755.2000.00265.x DOI: https://doi.org/10.1046/j.1523-1755.2000.00265.x

Jackson, S. J., Venema, R. C. 2006. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J. Nutr., vol. 136, p. 1178-1184. PMID: 16614401 DOI: https://doi.org/10.1093/jn/136.5.1178

Jakubowicz-Gil, J., Rzeski, W., Zdzisinska, B., Dobrowolski, P., Gawron, A. 2008. Cell death and neuronal arborization upon quercetin treatment in rat neurons. Acta Neurobiol Exp. (Wars), vol. 68, p. 139-146. PMID: 18511950

Kang, L. P., Qi, L. H., Zhang, J. P., Shi, N., Zhang, M., Wu, T. M., Chen, J. 2001. Effect of genistein and quercetin on proliferation, collagen synthesis, and type I procollagen mRNA levels of rat hepatic stellate cells. Acta Pharmacol Sin., vol. 22, p. 793-796. PMID: 11749858

Kanno S., Hirano S., Kayama F. 2004. Effects of phytoestrogens and environmentalestrogens on osteoblastic differentiation in MC3T3-E1cells. Toxicol., vol. 196, p. 137-145. https://doi.org/10.1016/j.tox.2003.12.002 DOI: https://doi.org/10.1016/j.tox.2003.12.002

Kavalcová, P., Bystrická, J., Trebichalský, P., Kopernická, M., Hrstková, M., Lenková, M. 2015. Content of total polyphenols and antioxidant activity in selected varieties of onion (Allium cepa L.). Potravinarstvo, vol. 9, p. 494-500. https://doi.org/10.5219/524 DOI: https://doi.org/10.5219/524

Kim, Y. J., Bae, Y. C., Suh, K. T., Jung, J. S. 2006. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem. Pharmacol., vol. 72, p. 1268-1278. https://doi.org/10.1016/j.bcp.2006.08.021 DOI: https://doi.org/10.1016/j.bcp.2006.08.021

Knab, A. M., Shanely, R. A., Jin, F., Austin, M. D., Sha, W., Nieman, D. C., 2011. Quercetin with vitamin C and niacin does not affect body mass or composition. Appl. Physiol. Nutr. Metab., vol. 36, p. 331-338. https://doi.org/10.1139/h11-015 PMID: 21574787 DOI: https://doi.org/10.1139/h11-015

Kovacevic, G., Matulic, A. 2013. Effect of quercetin on the green hydra (Hydra viridissima Pallas, 1766). Int. J. Biol., vol. 5, p. 57- 63. https://doi.org/10.5539/ijb.v5n3p57 DOI: https://doi.org/10.5539/ijb.v5n3p57

Lakhanpal, P., Kumar, P. 2007. Quercetin: A versatile flavonoid. Int. J. Med. Update, vol. 2, p. 22-37. https://doi.org/10.4314/ijmu.v2i2.39851 DOI: https://doi.org/10.4314/ijmu.v2i2.39851

Leikert, J. F., Räthel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M., Dirsch, V. M. 2002. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation, vol. 106, p. 1614-1617. https://doi.org/10.1161/01.CIR.0000034445.31543.43 PMID:12270851 DOI: https://doi.org/10.1161/01.CIR.0000034445.31543.43

Lesniak-Walentyn, A., Kolesarova, A., Medvedova, M., Maruniakova, N., Capcarova, M., Kalafova, A., Hrabia, A., Sirotkin, A. V. 2013. Proliferation and apoptosis in the rabbit ovary after administration of T-2 toxin and quercetin. J. Animal and Feed Sciences, vol. 22, p. 264-271. https://doi.org/10.1016/j.repbio.2012.11.043 DOI: https://doi.org/10.22358/jafs/65995/2013

Liang, W., Luo, Z., Ge, S., Li, M., Du, J., Yang, M., Yan, M., Ye, Z., Luo, Z. 2011. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur. J. Pharmacol., vol. 670, no. 1, p. 317-324. https://doi.org/10.1016/j.ejphar.2011.08.014 DOI: https://doi.org/10.1016/j.ejphar.2011.08.014

Liu, R. H. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., vol. 134, p. 3479S-3485S. PMID: 15570057 DOI: https://doi.org/10.1093/jn/134.12.3479S

Manach, C., Regerat, F., Texier, O. 1996. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res., vol. 16, no. 3, p. 517-534. https://doi.org/10.1016/0271-5317(96)00032-2 DOI: https://doi.org/10.1016/0271-5317(96)00032-2

Martiniaková, M., Vondráková, M., Fabiš, M. 2003. Investigation of the microscopic structure of rabbits compact bone tissue. Scripta medica (Brno), vol. 76, p. 215-220.

Martiniaková, M., Grosskopf, B., Omelka, R., Vondráková, M., Bauerová, M. 2006. Differences in bone microstructure of mammalian skeletons: use of a discriminant function analysis for species identification. J. Forensic Sci., vol. 51, p. 1235-1239. https://doi.org/10.1111/j.1556-4029.2006.00260.x PMID: 17199608 DOI: https://doi.org/10.1111/j.1556-4029.2006.00260.x

Martiniaková, M., Omelka, R., Grosskopf, B., Sirotkin, A. V., Chrenek, P. 2008. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand., vol. 50, p. 15. https://doi.org/10.1186/1751-0147-50-15 PMID: 18522730 DOI: https://doi.org/10.1186/1751-0147-50-15

Nabavi, S.M., Nabavi, S.F., Eslami, S., Moghaddam, A.H. 2012. In vivo protective effects ofquercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem., vol. 132, no. 2, p. 931-935. https://doi.org/10.1016/j.foodchem.2011.11.070 DOI: https://doi.org/10.1016/j.foodchem.2011.11.070

Nam, T. W., Yoo, C. I., Kim, H. T., Kwon, C. H., Park, J. Y., Kim, Y. K. 2008. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J. Bone Miner. Metab., vol. 26, p. 551-560. https://doi.org/10.1007/s00774-008-0864-2 DOI: https://doi.org/10.1007/s00774-008-0864-2

Nickel, T., Hanssen, H., Sisic, Z., Pfeiler, S., Summo, C., Schmauss, D., Hoster, E., Weis, M. 2011. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur. J. Nutr., vol. 50, p. 163-172. https://doi.org/ 10.1007/s00394-010-0125-8 PMID: 20652710 DOI: https://doi.org/10.1007/s00394-010-0125-8

Notoya, M., Tsukamoto, Y., Nishimura, H., Woo, J. T., Nagai, K., Lee, I. S., Hagiwara, H. 2004. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur. J. Pharmacol., vol. 485, p. 89-96. https://doi.org/10.1016/j.ejphar.2003.11.058 DOI: https://doi.org/10.1016/j.ejphar.2003.11.058

Okamoto T. 2005. Safety of quercetin for clinical application (Review). Int J Mol Med., vol. 16, p. 275-278. https://doi.org/10.3892/ijmm.16.2.275 DOI: https://doi.org/10.3892/ijmm.16.2.275

Partridge, N. C., Alcorn, D., Michelangeli, V. P., Kemp, B. E., Ryan, G. B., Martin, T. J. 1981. Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells. Endocrinology, vol. 108, p. 213-219. https://doi.org/10.1210/endo-108-1-213 DOI: https://doi.org/10.1210/endo-108-1-213

Pries, A. R., Reglin, B., Secomb, T. W. 2005. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension, vol. 46, p. 725-731. https://doi.org/ 10.1161/01.HYP.0000184428.16429.be DOI: https://doi.org/10.1161/01.HYP.0000184428.16429.be

Prouillet, C., Mazièreb, J. C., Mazièreb, C. 2004. Stimultatory effect of naturaly occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through EKR and estrogen receptor pathway. Biochem. Pharmacol, vol. 67, p. 1307-1313. https://doi.org/10.1016/j.bcp.2003.11.009 DOI: https://doi.org/10.1016/j.bcp.2003.11.009

Rahman, A., Fazal, F., Greensill, J., Ainley, K., Parish, J. H., Hadi, S. M., 1992. Strand scission in DNA induced by dietary flavonoids: role of Cu(I) and oxygen free radicals and biological consequences of scission. Mol, Cell Biochem., vol. 111, p. 3-9. PMID: 1588940 DOI: https://doi.org/10.1007/BF00229567

Rice, S., Mason, H. D., Whitehead, S. A. 2006. Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J, Steroid Biochem. Moll Biol., vol. 101, p. 216-225. https://doi.org/10.1016/j.jsbmb.2006.06.021 DOI: https://doi.org/10.1016/j.jsbmb.2006.06.021

Robaszkiewicz, A., Balcerczyk, A., Bartosz, G. 2007. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Bioll Int., vol. 31, p. 1245-1250. https://doi.org/10.1016/j.cellbi.2007.04.009 DOI: https://doi.org/10.1016/j.cellbi.2007.04.009

Ross, J. A., Kasum, C. M. 2002. Dietary flavonoids: bioavailability, metabolic effects and safety. Annul Revl Nutr., vol. 22, p. 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957 DOI: https://doi.org/10.1146/annurev.nutr.22.111401.144957

Sahu, S. C., Washington, M. C. 1991. Quercetin-induced lipid peroxidationand DNA damage in isolated rat-liver nuclei. Cancer Lett., vol. 58, p. 75-79. https://doi.org/10.1016/0304-3835(91)90026-E DOI: https://doi.org/10.1016/0304-3835(91)90026-E

Satué, M., Arriero, M. del M., Monjo, M., Ramis, J. M. 2013. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol., vol. 86, no. 10, p. 1476-1486. https://doi.org/10.1016/j.bcp.2013.09.009 DOI: https://doi.org/10.1016/j.bcp.2013.09.009

Satyanarayana, P. S., Singh, D., Chopra, K. 2001. Quercetin, a bioflavonoid, protects again oxidative stress-related renal dysfunction by cyclosporine in rats. Methods Find. Exp. Clin. Pharmacol., vol. 23, p. 175-181. https://doi.org/10.1358/mf.2001.23.4.634641 PMID: 11676225 DOI: https://doi.org/10.1358/mf.2001.23.4.634641

Schmitt, C. A., Dirsch, V. M. 2009. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide, vol. 21, p. 77-91. http://dox.doi.org/10.1016/j.niox.2009.05.006 PMID: 19497380 DOI: https://doi.org/10.1016/j.niox.2009.05.006

Şekeroğlu, Z. A., Şekeroğlu, V. 2012. Effects of Viscum album L. extract and quercetin on methotrexate-induced cyto-genotoxicity in mouse bone marrow cells. Mutat Res., vol. 746, no. 1, p. 56-59. https://doi.org/10.1016/j.mrgentox.2012.02.012 DOI: https://doi.org/10.1016/j.mrgentox.2012.02.012

Sharan, K., Mishra, J. S., Swarnkar, G., Siddiqui, J. A., Khan, K., Kumari, R., Rawat, P., Maurya, R., Sanyal, S., Chattopadhyay, N. 2011. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J. Bone Miner. Res., vol. 26, p. 2096-2111. https://doi.org/10.1002/jbmr.434 PMID: 21638315 DOI: https://doi.org/10.1002/jbmr.434

Skibola, C. F., Smith, M. T. 2000. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., vol. 29, p. 375-383. https://doi.org/10.1016/S0891-5849(00)00304-X DOI: https://doi.org/10.1016/S0891-5849(00)00304-X

Son, Y. O., Kook, S. H., Choi, K. C., Jang, Y. S., Choi, Y. S., Jeon, Y. M., Kim, J. G., Hwang, H. S., Lee, J. C. 2008. Quercetin accelerates TNF-α-induced apoptosis of MC3T3-E1 osteoblastic cells through caspase-dependent and JNK-mediated pathways. Eur. J. Phramacol., vol. 579,

p. 26-33. https://doi.org/10.1016/j.ejphar.2007.10.003 PMID: 17988664 DOI: https://doi.org/10.1016/j.ejphar.2007.10.003

Soria, E. A., Eynard, A. R., Bongiovanni, G. A. 2010. Cytoprotective effects ofsilymarin on epithelial cells against arsenic-induced apoptosis incontrast with quercetin cytotoxicity. Life Sci., vol. 87, p. 309-315. https://doi.org/10.1016/j.lfs.2010.07.007 DOI: https://doi.org/10.1016/j.lfs.2010.07.007

Spencer, J. P., Kuhnle, G. G., Williams, R. J., Rice-Evans, C. 2003. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J., vol. 15, p. 173-181. https://doi.org/10.1042/bj20021972 PMID: 12578560 DOI: https://doi.org/10.1042/bj20021972

Stipcevic, T., Piljac, J., Vanden Berghe, D. 2006. Effect of different flavonoids on collagen synthesis in human fibroblasts. Plant Foods Hum. Nutr., vol. 61, p. 29-34. https://doi.org/10.1007/s11130-006-0006-8 PMID: 16642409 DOI: https://doi.org/10.1007/s11130-006-0006-8

Verhoeyen, M. E., Bovy, A., Collins, G., Muir, S., Robinson, S., Vos, C., Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot., vol. 53, p. 2099-2106. https://doi.org/10.1093/jxb/erf044 DOI: https://doi.org/10.1093/jxb/erf044

Wallerath, T., Li, H., Gӧdtel-Ambrust, U., Schwarz, P. M., Fӧrstermann, U. 2005. A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide, vol. 12, p. 97-104. https://doi.org/10.1016/j.niox.2004.12.004 PMID: 15740983 DOI: https://doi.org/10.1016/j.niox.2004.12.004

Wattel, A., Kamel, S., Prouillet, C., Petit, J. P., Lorget, F., Offord, E., Brazier, M. 2004. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NFκB and AP-1. J. Cell Biochem., vol. 92, p. 285-295. https://doi.org/10.1002/jcb.20071 DOI: https://doi.org/10.1002/jcb.20071

Wein, S., Schrader, E., Rimbach, G., Wolffram, S. 2013. Oral quercetin supplementation lowers plasma sICAM-1 concentrations in female db/db mice. Pharmacol. Pharm., vol. 4, p. 77-83. http://dx-doi.org/10.4236/pp.2013.41011 DOI: https://doi.org/10.4236/pp.2013.41011

Wu, Q. H., Wang, X., Yang, W., Nüssler, A. K., Xiong, L. Y., Kuča, K., Dohnal, V., Zhang, X. J., Yuan, Z. H. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch. Toxicol., vol. 88, p. 1309-1326. http:/dx.doi.org/10.1007%2Fs00204-014-1280-0 DOI: https://doi.org/10.1007/s00204-014-1280-0

Yamaguchi, M., Weitzmann, M. N. 2011. Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int. J. Mol. Med., vol. 28, p. 521-525. https://doi.org/10.3892/ijmm.2011.749 DOI: https://doi.org/10.3892/ijmm.2011.749

Yang, S., Ries, W., Key, Jr L. L. 1998. Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int., vol. 63, p. 346-350. PMID: 9744995 DOI: https://doi.org/10.1007/s002239900538

Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., Chen, S. S. 2004. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., vol. 59, p. 113-122. PMID: 15678717 DOI: https://doi.org/10.1007/s11130-004-0049-7

Zhou, C., Lin, Y. 2014. Osteogenic differentiation of adipose-derived stem cells promoted by quercetin. Cell Prolif., vol. 47, p. 124-132. https://doi.org/10.1111/cpr.12097 DOI: https://doi.org/10.1111/cpr.12097

Zhang, Q., Zhao, X., H., Wang, Z. J. 2009. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (Kyse-510) by induction of G2/M arrest and apoptosis. Toxicol. In Vitro, vol. 23, p. 797-807. https://doi.org/10.1016/j.tiv.2009.04.007 DOI: https://doi.org/10.1016/j.tiv.2009.04.007




How to Cite

Babosová, R. ., Omelka, R. ., Ďúranová, H. ., Kováčová, V. ., Lukáčová, M. ., Capcarová, M. ., & Martiniaková, M. . (2016). Quercetin-induced changes in femoral bone microstructure of adult male rabbits. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 300–307. https://doi.org/10.5219/607

Most read articles by the same author(s)