Phytochemical profile and biological activity of selected kind of medicinal herbs


  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414421
  • Dajana Vasková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel: +421376415816
  • Grzegorz Zagula University of Rzeszów, Faculty of Biology and Agriculture, Department of Bioenergetics and Food Science, Rejtana Street 16c, PL-35-959 Poland, Tel: +48177855046
  • Dzmitry Grynshpan Belarusian State University, Research Institute of Physical and Chemical Problems, Minsk, Leningradskaya str., 14. 220030, Belarus, Tel: +3750172265940
  • Tatsiana Aleksandrovna Savitskaya Belarusian State University, Research Institute of Physical and Chemical Problems, Minsk, Leningradskaya str., 14. 220030, Belarus, Tel: +3750172265940
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit sciences, Viticulture and Enology, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, University of Rzeszów, Faculty of Biology and Agriculture, Department of Bioenergetics and Food Science, Rejtana Street 16c, PL-35-959 Poland, Tel:+421376414715



mineral compounds, antioxidant activity, polyphenols, antimicrobial activity, plants


Medicinal herbs are used due to their health benefits, a special aroma, taste and are considered as one of the richest sources of bioactive compounds. The present study aimed to determine antioxidant activity (DPPH and phosphomolybdenum method), a total polyphenol (using Folin-Ciocalteu reagent), flavonoid (aluminium chloride method), phenolic acid content (using Arnov reagent), antimicrobial activity (disc diffusion method) and chemical composition (ICP-OES instrument) of medicinal herbs (ginger, comfrey, valerian, chicory, horseradish, and ramsons) grown in Slovak republic. Antioxidant activity by DPPH method ranged from 0.61 (ramsons) to 3.62 (ginger) mg TEAC per g of dry matter (TEAC – Trolox equivalent antioxidant capacity); by phosphomolybdenum method from 66.67 (valerian) to 204.14 (ginger) mg TEAC per g of dry matter. Total polyphenol content ranged from 4.37 (comfrey) to 13.19 (ramsons) GAE per g of dry matter (GAE – gallic acid equivalent); total flavonoid content from 1.07 (chicory) to 47.55 (ramsons) QE per g of dry matter (QE – quercetin equivalent) and total phenolic acid content from 0.99 (horseradish) to 9.77 (ginger) CAE per g of dry matter (CAE – caffeic acid equivalent). In a sample of ginger was detected the highest antimicrobial activity against Bacillus cereus CCM 7934 (5 mm). Among the mineral compounds – in all observed samples were dominated (mg.100g-1) of potassium, phosphor, magnesium, and calcium. The amount of cadmium, chrome, and lead in observed samples was detected only in a trace amount, so our results reveal that the medicinal herbs do not represent in this study a potential health risk regarding the content of toxic elements. The consumption and using of medicinal plants as a part of the food mode of consumers due to health benefits is recommended.


Download data is not yet available.


Metrics Loading ...


Abbas, Z. K., Saggu, S., Sakeran, M. I., Zidan, N., Rehman, H., Ansari, A. A. 2015. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi Journal of Biological Sciences, vol. 22, no. 3, p. 322-326. DOI:

Ahamad, R., Mujeeb, M., Anwar, F., Ahmad, A. 2015. Pharmacological and molecular activity of methanolic extract of Cichorium intybus Linn seeds. European Journal of Experimental Biology, vol. 5, no. 7, p. 26-35.

Akinola, A. A., Ahmad, S., Maziah, M. 2014. Total Anti-Oxidant Capacity, Flavonoid, Phenolic Acid And Polyphenol Content In Ten Selected Species Of Zingiberaceae Rhizomes. African Journal of Traditional, Complementary and Alternative Medicines, vol. 11, no. 3, 7 p. DOI:

Araya, M., Manuel, O., Fernando, P. 2007. Copper in human health. International Journal of Environment and Health, vol. 1, no. 4, p. 608-620. DOI:

Bertóti, R., Böszörményi, A., Alberti, Á., Béni, S., M-Hamvas, M., Szöke, É., Vasas, G., Gonda, S. 2019. Variability of Bioactive Glucosinolates, Isothiocyanates and Enzyme Patterns in Horseradish Hairy Root Cultures Initiated from Different Organs. Molecules, vol. 24, no. 15, 18 p. DOI:

Calabrone, L., Larocca, M., Marzocco, S., Martelli, G., Rossano, R. 2015 Total Phenols and Flavonoids Content, Antioxidant Capacity and Lipase Inhibition of Root and Leaf Horseradish (Armoracia rusticana) Extracts. Food and Nutrition Sciences, vol. 6, no. 1, 12 p. DOI:

Chasapis, C. T., Loutsidou, A. C., Saliopoulou, C. A., Stefanidou, M. E. 2012. Zinc and human health: an update. Archives of Toxicology, vol. 86, p. 521-534. DOI:

Danwilai, K., Konmun, J., Sripanidkulchai, B., Subongkot, S. 2017. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: a pilot study. Cancer Management and Research, vol. 9, p. 11-18. DOI:

Fahmi, A., Hassanen, N., Abdur-Rahman, M., Shams-Eldin, E. 2019. Phytochemicals, antioxidant activity and hepatoprotective effect of ginger (Zingiber officinalis) on diethylnitrosamine toxicity in rats. Biomarkers, vol. 24, no. 5, p. 436-447. DOI:

Farmakopea Polska, 1999. The Polish Farmaceutical Society. Available at:

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A. 2010. Antioxidant Activities, Total Phenolics and Flavonoids Content in Two Varieties of Malaysia Young Ginger (Zingiber officinal Roscoe). Molecules, vol. 15, no. 6, p. 4324-4333. DOI:

Kaur, J., Kaur., S., Mahajan, A. 2013.Herbal Medicines: Possible Risks and Benefits. American Journal of Phytomedicine and Clinical Therapeutics, vol. 1, p. 226-239. Available at:

Krivokapic, M., Bradic, J., Petkovic, A., Popovic, M. 2018. Phytochemical and Pharmacological Properties of Allium ursinum. Serbian Journal of Experimental and Clinical Research, vol. 1, 6 p. DOI:

Lachowicz, S., Kolniak-Ostek, J., Oszmiański, J., Wiśniewski, R. 2017. Comparison of Phenolic Content and Antioxidant Capacity of Bear Garlic (Allium ursinum L.) in Different Maturity Stages. Journal of Food Processing and Preservation, vol. 41, no. 1, 6 p. DOI:

Liu, H., Wang, Q., Liu, Y., Chen, G., Cui, J. 2013 Antimicrobial and Antioxidant Activities of Cichorium intybus Root Extract Using Orthogonal Matrix Design. Journal of Food Science, vol. 78, no. 2, p. 258-263. DOI:

Marder, M., Viola, H., Wasowski, C., Fernández, S., Medina, J. H., Paladini, A. C. 2003. 6-Methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNC. Pharmacological Biochemistry and Behavior, vol. 75, no. 3, p. 537-545. DOI:

Mona, I. M., Wafaa, A. A., Elgindy, A. A. 2009. Chemical and Technological Studies on Chicory (Cichory intybus L.) and its Applications in Some Functional Food. Journal of Advanced Agriculture Research, vol. 14, no. 3, p. 735-756.

Mošovská, S., Nováková, D., Kaliňák, M. 2015. Antioxidant activity of ginger extract and identification of its active components. Acta Chimica Slovaca, vol. 8, no. 2, p. 115-119. DOI:

Mustafa, I., Chin, N. L., Fakurazi, S., Palanisamy, A. 2019. Comparison of Phytochemicals, Antioxidant and Anti-inflammatory Properties of Sun-, Oven-, and Freeze-Dried Ginger Extracts. Foods, vol. 8, no. 10, 11 p. DOI:

Nas, F. S., Ali, M., Ahmad, A. M. 2018. In Vitro Antibacterial Activity of Different Extracts of Zingiber officinale against Bacterial Isolates Responsible for Food Spoilage. SOA Archives of Pharmacy and Pharmacology, vol. 1, no. 1, p. 1-5.

Neagu, E., Roman, G. P., Radu, G. L. 2010. Antioxidant capacity of some Symphytum officinalis extracts processed by ultrafiltration. Romanian Biotechnological Letters, vol. 15, no. 4, p. 5505-5511.

Nossa González, D. L. N., Talero Pérez, V. Y.., Rozo Núñez, W. E. 2016. Determination of polyphenols and antioxidant activity of polar extracts of comfrey (Symphytum officinale L.). Revista Cubana de Plantas Medicinales, vol. 21, no. 2, p. 125-132. Available at:

Pejatović, T., Samardžić, D., Krivokapić, S. 2017. Antioxidative properties of a traditional tincture and several leaf extracts of Allium ursinum L. (collected in Montenegro and Bosnia and Hercegovina). Journal of Materials and Environmental Sciences, vol. 8, no. 6, p. 1929-1934.

Pilerood, A. S., Prakash, J. 2014. Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis). Journal of Food Science and Technology, vol. 51, p. 845-854. DOI:

Prieto, P., Pineda, M., Aguilar, M. 1999. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phospomolybdenum Complex: Specific Application to the Determitation of Vitamin E. Analytical Biochemistry, vol. 269, no. 2, p. 337-341. DOI:

Putnoky, S., Caunii, A., Butnariu, M. 2013.Study on the stability and antioxidant effect of the Allium ursinum watery extract. Chemistry Central Journal, vol. 7, 6 p. DOI:

Quadir, M. A., Shahzadi, S. K., Bashir, A., Munir, A., Shahzad, S. 2017. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs. International Journal of Analytical Chemistry, 6 p. DOI:

Sánchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. 1998. A procedure to measure the antioxidant afficiency of polyphenols. Journal of the Science and Food Agriculture, vol. 76, no. 2, p. 270-276.<270::AID-JSFA945>3.0.CO;2-9 DOI:<270::AID-JSFA945>3.0.CO;2-9

SAS. 2009. Users Guide Version 9. 2. SAS/STAT (r) SAS Institute Inc. Cary, NC, USA.

Shakya, A. K. 2016. Medicinal plants: Future source of new drugs. International Journal of Herbal Medicine, vol. 4, no. 4, p. 59-64.

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of Total Phenolics with Phosphomolybdic. Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, vol. 16, p. 144-158.

Sobolewska, D., Podolak, I., Makowska-Was, J. 2015. Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, vol. 14, p. 81-97. DOI:

Sowa, I., Paduch, R., Strzemski, M., Zielińska, S., Rydzik-Strzemska, E., Sawićki, J., Kocjan, R., Polkowski, J., Matkowski, A., Latalski, M., Wójciaj-Kosior, M. 2017. Proliferative and antioxidant activity of Symphytum officinale root extract. Natural Product Research, vol. 32, no. 5, p. 605-609. DOI:

Stahl, T., Falk, S., Rohrbeck, A., Georgii, S., Herzog, C., Wiegand, A., Hotz, S., Boschek, B., Zorn, H., Brunn, H. 2017. Migration of aluminium from food contact materials to food – a health risk for consumers? Part I. of III.: exposure to aluminium, release of aluminium, tolerable weekly intake (TWI), toxicological effect of aluminium, study of design and methods. Environmental Sciences Europe, vol. 29, 8 p. DOI:

Sudati, J. H., Fachinetto, R., Pereira, R. P., Boligon, A. A., Athayde, M. L., Soares, F. A., de Vargas Barbosa, N. B., Teixeira Rocha, J. B. 2009. In vitro Antioxidant Activity of Valeriana officinalis Against Different Neurotoxic Agents. Neurochemical Research, vol. 34, p. 1372-1379. DOI:

Sumathi, S., Kumar, S. S., Bai, A. 2011. Evaluation of Phytochemical Constituents and Antibacterial Activities of Symphytum officinale L. Journal of Pure and Applied Microbiology, vol. 5, no. 1, p. 323-328.

Willett, W. C. 2002. Balancing Life-Style and Genomics Research for Disease Prevention. Science, vol. 292, no. 5568, p. 695-698. DOI:



How to Cite

Ivanišová, E., Vasková, D., Zagula, G., Grynshpan, D., Savitskaya, T. A. ., & Kačániová, M. (2020). Phytochemical profile and biological activity of selected kind of medicinal herbs. Potravinarstvo Slovak Journal of Food Sciences, 14, 573–579.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.