The potential of non-traditional walnut shells waste for the production of antioxidant reach extracts intended for the food industry

Authors

  • Madina Sultanova Astana branch of Kazakh Research Institute of Processing and Food Industry LLP, Al-Farabi Avenue 47, 010000, Nur-Sultan, Republic of Kazakhstan, Tel.: +77474853488
  • Askhat Dalabayev Astana branch of Kazakh Research Institute of Processing and Food Industry LLP, Al-Farabi Avenue 47, 010000, Nur-Sultan, Republic of Kazakhstan, Tel.: +77755155238
  • Aigerim Saduakas Astana branch of Kazakh Research Institute of Processing and Food Industry LLP, Al-Farabi Avenue 47, 010000, Nur-Sultan, Republic of Kazakhstan
  • Aida Nurysh Astana branch of Kazakh Research Institute of Processing and Food Industry LLP, Al-Farabi Avenue 47, 010000, Nur-Sultan, Republic of Kazakhstan
  • Nurtore Akzhanov Astana branch of Kazakh Research Institute of Processing and Food Industry LLP, Al-Farabi Avenue 47, 010000, Nur-Sultan, Republic of Kazakhstan
  • Madina Yakiyayeva Almaty Technological University, Research Institute of Food Technologies, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +77011626749 https://orcid.org/0000-0002-8564-2912

DOI:

https://doi.org/10.5219/1862

Keywords:

walnut shell, vitamin, mineral, antioxidant, phenolic compound

Abstract

Phenolic compounds extracted from walnut shells are potentially good natural sources of antioxidants for the food industry and have numerous health benefits. Walnuts have more antioxidant capacity than any other nut because the shell is primarily composed of lignin, a strong source of phenols. Studies demonstrated that lignin characterizes the shell strength level and is a source of antioxidants due to its chemical composition. In the current study, an extract obtained by extraction with a hydroalcoholic solvent of various concentrations from a walnut shell was investigated. The results of this study have proven that walnut shell extract contains the main sources of mineral elements and vitamins, which are of great importance. According to the biological value, this extract contains essential amino acids for the body. The high content of quercetin and catechin shows the antioxidant activity of the extract. In the present article, the authors disclose methods for obtaining an experimental batch of a prophylactic product based on walnut shells and give the product a technological characteristic. Consequently, a product was developed for prophylactic usage of 10 ml per 100 ml of water and must be taken 1-2 times a day for 21 days. The required product amount was calculated from the daily intake of vitamins, minerals, and flavonoids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Rusu, M. E., Georgiu, C., Pop, A., Mocan, A., Kiss, B., Vostinaru, O., Fizesan, I., Stefan, M.-G., Gheldiu, A.-M., Mates, L., Moldovan, R., Muntean, D. M., Loghin, F., Vlase, L., & Popa, D.-S. (2020). Antioxidant Effects of Walnut (Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. In Antioxidants (Vol. 9, Issue 5, p. 424). MDPI AG. https://doi.org/10.3390/antiox9050424 DOI: https://doi.org/10.3390/antiox9050424

Derimedved, L. V., Pertsev, I. M., & Kovalev, V. N. (2008). Biologically active additives containing medicinal plant materials. In Pharmacist (Vol. 3, pp. 17–20).

Golovkin, B. N., Rudenskaya, R. N., Trofimova, I. A., & Schreter, A. I. (2001). Biologically active substances of plant origin (Volume 1, Issue 18, 350 p.).

Kornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. In Food Chemistry (Vol. 98, Issue 2, pp. 381–387). Elsevier BV. https://doi.org/10.1016/j.foodchem.2005.07.033 DOI: https://doi.org/10.1016/j.foodchem.2005.07.033

Salejda, A. M., Janiewicz, U., Korzeniowska, M., Kolniak-Ostek, J., & Krasnowska, G. (2016). Effect of walnut green husk addition on some quality properties of cooked sausages. In LWT - Food Science and Technology (Vol. 65, pp. 751–757). Elsevier BV. https://doi.org/10.1016/j.lwt.2015.08.069 DOI: https://doi.org/10.1016/j.lwt.2015.08.069

Raja, V., Ahmad, S. I., Irshad, M., Wani, W. A., Siddiqi, W. A., & Shreaz, S. (2017). Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effect on growth, cell morphology, and key virulence factors. In Journal de Mycologie Médicale (Vol. 27, Issue 4, pp. 476–486). Elsevier BV. https://doi.org/10.1016/j.mycmed.2017.07.002 DOI: https://doi.org/10.1016/j.mycmed.2017.07.002

Jahanban-Esfahlan, Ostadrahimi, Tabibiazar, & Amarowicz. (2019). A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk. In International Journal of Molecular Sciences (Vol. 20, Issue 16, p. 3920). MDPI AG. https://doi.org/10.3390/ijms20163920 DOI: https://doi.org/10.3390/ijms20163920

Medic, A., Jakopic, J., Solar, A., Hudina, M., & Veberic, R. (2021). Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds. In Biology (Vol. 10, Issue 6, p. 535). MDPI AG. https://doi.org/10.3390/biology10060535 DOI: https://doi.org/10.3390/biology10060535

Chamorro, F., Carpena, M., Lourenço-Lopes, C., Taofiq, O., Otero, P., Cao, H., Xiao, J., Simal-Gandara, J., & Prieto, M. A. (2022). By-Products of Walnut (Juglans regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods. In IECN 2022. IECN 2022. MDPI. https://doi.org/10.3390/iecn2022-12396 DOI: https://doi.org/10.3390/IECN2022-12396

Viguiliouk, E., Kendall, C. W. C., Blanco Mejia, S., Cozma, A. I., Ha, V., Mirrahimi, A., Jayalath, V. H., Augustin, L. S. A., Chiavaroli, L., Leiter, L. A., de Souza, R. J., Jenkins, D. J. A., & Sievenpiper, J. L. (2014). Effect of Tree Nuts on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Dietary Trials. In C. M. Schooling (Ed.), PLoS ONE (Vol. 9, Issue 7, p. e103376). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0103376 DOI: https://doi.org/10.1371/journal.pone.0103376

Xu, P., Bao, J., Gao, J., Zhou, T., & Wang, Y. (2012). Optimization of extraction of phenolic antioxidants from tea (Camellia sinensis L.) fruit peel biomass using response surface methodology. In BioResources (Vol. 7, Issue 2, pp. 2431–2443). BioResources. https://doi.org/10.15376/biores.7.2.2431-2443 DOI: https://doi.org/10.15376/biores.7.2.2431-2443

Rusu, M. E., Simedrea, R., Gheldiu, A.-M., Mocan, A., Vlase, L., Popa, D.-S., & Ferreira, I. C. F. R. (2019). Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. In Trends in Food Science and Technology (Vol. 88, pp. 104–120). Elsevier BV. https://doi.org/10.1016/j.tifs.2019.03.006 DOI: https://doi.org/10.1016/j.tifs.2019.03.006

Daironas, J. V., Kuleshova, S. A., & Pshukova, I. V. (2010). Phytochemical study of walnut leaves as a source of antioxidant. In Chemistry of plant raw materials (Vol. 4, pp. 95–98). Altai State University.

Tsasi, G., Milošević-Ifantis, T., & Skaltsa, H. (2016). Phytochemical Study of Juglans regia L. Pericarps from Greece with a Chemotaxonomic Approach. In Chemistry and Biodiversity (Vol. 13, Issue 12, pp. 1636–1640). Wiley. https://doi.org/10.1002/cbdv.201600067 DOI: https://doi.org/10.1002/cbdv.201600067

Han, H., Wang, S., Rakita, M., Wang, Y., Han, Q., & Xu, Q. (2018). Effect of Ultrasound-Assisted Extraction of Phenolic Compounds on the Characteristics of Walnut Shells. In Food and Nutrition Sciences (Vol. 09, Issue 08, pp. 1034–1045). Scientific Research Publishing, Inc. https://doi.org/10.4236/fns.2018.98076 DOI: https://doi.org/10.4236/fns.2018.98076

Jahanban-Esfahlan, A., & Amarowicz, R. (2018). Walnut (Juglans regiaL.) shell pyroligneous acid: chemical constituents and functional applications. In RSC Advances (Vol. 8, Issue 40, pp. 22376–22391). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c8ra03684e DOI: https://doi.org/10.1039/C8RA03684E

Wei, Q., Ma, X., Zhao, Z., Zhang, S., & Liu, S. (2010). Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. In Journal of Analytical and Applied Pyrolysis (Vol. 88, Issue 2, pp. 149–154). Elsevier BV. https://doi.org/10.1016/j.jaap.2010.03.008 DOI: https://doi.org/10.1016/j.jaap.2010.03.008

Belmekki, N., & Bendimerad, N. (2012). Antioxidant activity and phenolic content in methanol crude extracts from three Lamiaceae grown in southwestern Algeria. In Carcinogenesis (Vol. 2, Issue 1, pp. 175–181). Scholars Research Library.

Akkol, E. K., Orhan, I. E., & Yeşilada, E. (2012). Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus laurifolius L. leaves. In Food Chemistry (Vol. 131, Issue 2, pp. 626–631). Elsevier BV. https://doi.org/10.1016/j.foodchem.2011.09.041 DOI: https://doi.org/10.1016/j.foodchem.2011.09.041

Fernández-Agulló, A., Pereira, E., Freire, M. S., Valentão, P., Andrade, P. B., González-Álvarez, J., & Pereira, J. A. (2013). Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. In Industrial Crops and Products (Vol. 42, pp. 126–132). Elsevier BV. https://doi.org/10.1016/j.indcrop.2012.05.021 DOI: https://doi.org/10.1016/j.indcrop.2012.05.021

Zakaria, Z. A., Mohamed, A. M., Jamil, N. S. M., Rofiee, M. S., Somchit, M. N., Zuraini, A., Arifah, A. K., & Sulaiman, M. R. (2011). In vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. In African journal of Biotechnology (Vol. 10, pp. 273–282). Academic Journals.

Yang, J., Chen, C., Zhao, S., Ge, F., & Liu, D. (2014). Effect of Solvents on the Antioxidant Activity of Walnut (Juglans regia L.) Shell Extracts. In Journal of Food and Nutrition Research (Vol. 2, Issue 9, pp. 621–626). Science and Education Publishing Co., Ltd. https://doi.org/10.12691/jfnr-2-9-15 DOI: https://doi.org/10.12691/jfnr-2-9-15

Kurian, G. A., Suryanarayanan, S., Raman, A., & Padikkala, J. (2010). Antioxidant effects of ethyl acetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rat hearts. In Chinese Medicine (Vol. 5, Issue 1, pp. 3). Springer Science and Business Media LLC. https://doi.org/10.1186/1749-8546-5-3 DOI: https://doi.org/10.1186/1749-8546-5-3

Iztayev, A., Kulazhanov, T. K., Yakiyayeva, M. A., Zhakatayeva, A. N., & Baibatyrov, T. A. (2021). Method for the safe storage of sugar beets using an ion-ozone mixture. In Acta Scientiarum Polonorum Technologia Alimentaria (Vol. 20, Issue 1, pp. 25–35). Uniwersytet Przyrodniczy w Poznaniu (Poznan University of Life Sciences). https://doi.org/10.17306/j.afs.2021.0865 DOI: https://doi.org/10.17306/J.AFS.2021.0865

Nurgozhina, Z., Shansharova, D., Umirzakova, G., Maliktayeva, P., & Yakiyayeva, M. (2022). The influence of grain mixtures on the quality and nutritional value of bread. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 320–340). HACCP Consulting. https://doi.org/10.5219/1767 DOI: https://doi.org/10.5219/1767

Yakiyayeva, M., Muldabekova, B., Mukhtarkhanova, R., Maliktayeva, P., Zheldybayeva, A., Nasrullin, G., & Toktarova, A. (2021). Devising the formulation and technology for baking buns from flour of composite mixtures and sugar beet. In Eastern-European Journal of Enterprise Technologies (Vol. 5, Issue 11 (113), pp. 73–84). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.240348 DOI: https://doi.org/10.15587/1729-4061.2021.240348

Sun, Q., Fu, L., Yin, C., Wu, M., Liu, H., Niu, N., & Chen, L. (2022). Construction of biomass carbon dots@molecularly imprinted polymer fluorescent sensor array for accurate identification of 5-nitroimidazole antibiotics. In Sensors and Actuators B: Chemical (Vol. 373, p. 132716). Elsevier BV. https://doi.org/10.1016/j.snb.2022.132716 DOI: https://doi.org/10.1016/j.snb.2022.132716

Aadi, A. S., Mohammed, A. A., Mohammed Ali, T. K., & Hilal, N. N. (2022). Ultra-Fine Treated and Untreated Walnut Shell Ash Incorporated Cement Mortar: Properties and Environmental Impact Assessments. In Annales de Chimie – Science des Matériaux (Vol. 46, Issue 6, pp. 313–321). International Information and Engineering Technology Association. https://doi.org/10.18280/acsm.460605 DOI: https://doi.org/10.18280/acsm.460605

Safavi, A., Richter, C., & Unnthorsson, R. (2022). Mathematical Modeling and Experiments on Pyrolysis of Walnut Shells Using a Fixed-Bed Reactor. In ChemEngineering (Vol. 6, Issue 6, p. 93). MDPI AG. https://doi.org/10.3390/chemengineering6060093 DOI: https://doi.org/10.3390/chemengineering6060093

Song, X., Shi, D., Li, W., Qin, H., & Han, X. (2022). Fabrication and properties of interweaved poly(ether ether ketone) composite scaffolds. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-26736-4 DOI: https://doi.org/10.1038/s41598-022-26736-4

Wang, W., Li, D., Xiang, P., Zheng, Y., Zheng, Z., Lin, X., He, X., & Liu, C. (2022). One-Step Pyrolysis of Nitrogen-Containing Chemicals and Biochar Derived from Walnut Shells to Absorb Polycyclic Aromatic Hydrocarbons (PAHs). In International Journal of Molecular Sciences (Vol. 23, Issue 23, p. 15193). MDPI AG. https://doi.org/10.3390/ijms232315193 DOI: https://doi.org/10.3390/ijms232315193

Ananiashvili, N., Giorgadze, N., & Tskhakaia, E. (2022). Adsorption of Iron(II) and Cadmium(II) Ions Separately using Carbon Materials from Hazelnuts and Walnuts Waste Shells. In Asian Journal of Chemistry (Vol. 34, Issue 12, pp. 3100–3104). Asian Journal of Chemistry. https://doi.org/10.14233/ajchem.2022.23838 DOI: https://doi.org/10.14233/ajchem.2022.23838

Yang, J., Zhang, K., Chen, D., Zhang, Y., & Zhang, X. (2022). Physical, mechanical and abrasive wear behavior of attapulgite reinforced walnut shell/PVC composites. In Journal of Polymer Research (Vol. 29, Issue 12). Springer Science and Business Media LLC. https://doi.org/10.1007/s10965-022-03374-y DOI: https://doi.org/10.1007/s10965-022-03374-y

Liu, G., Zhang, L., & Luo, R. (2022). Preparation of efficient heavy metal adsorbent based on walnut shell and adsorption for Pb(II) ions from aqueous solution. In Cellulose (Vol. 29, Issue 18, pp. 9819–9830). Springer Science and Business Media LLC. https://doi.org/10.1007/s10570-022-04869-z DOI: https://doi.org/10.1007/s10570-022-04869-z

Diao, R., Lu, H., Yang, Y., Bai, J., & Zhu, X. (2022). Comparative insights into flue gas-to-ash characteristics on co-combustion of walnut shell and bio-oil distillation sludge under atmospheric and oxy-fuel condition. In Combustion and Flame (Vol. 246, p. 112383). Elsevier BV. https://doi.org/10.1016/j.combustflame.2022.112383 DOI: https://doi.org/10.1016/j.combustflame.2022.112383

Liu, H., Pei, Z., & Li, W. (2022). Hypoglycemic and antioxidative activity evaluation of phenolic compounds derived from walnut diaphragm produced in Xinjiang. In Journal of Food Biochemistry (Vol. 46, Issue 12). Hindawi Limited. https://doi.org/10.1111/jfbc.14403 DOI: https://doi.org/10.1111/jfbc.14403

Wang, J., Ye, H., Zhou, H., Chen, P., Liu, H., Xi, R., Wang, G., Hou, N., & Zhao, P. (2022). Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.). In BMC Plant Biology (Vol. 22, Issue 1, p. 436). Springer Science and Business Media LLC. https://doi.org/10.1186/s12870-022-03824-1 DOI: https://doi.org/10.1186/s12870-022-03824-1

Song, X., Guan, W., Qin, H., Han, X., Wu, L., & Ye, Y. (2022). Properties of poly(lactic acid)/walnut shell/hydroxyapatite composites prepared with fused deposition modeling. In Scientific Reports (Vol. 12, Issue 1, p. 11563). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-15622-8 DOI: https://doi.org/10.1038/s41598-022-15622-8

Ding, Y.-M., Cao, Y., Zhang, W.-P., Chen, J., Liu, J., Li, P., Renner, S. S., Zhang, D.-Y., & Bai, W.-N. (2022). Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. In Genome Biology (Vol. 23, Issue 1, p. 145). Springer Science and Business Media LLC. https://doi.org/10.1186/s13059-022-02720-z DOI: https://doi.org/10.1186/s13059-022-02720-z

Liu, R., Chen, Q., Xia, H., Zhong, Q., Ren, X., Zhang, Y., Zhang, Y., & Wang, H. (2022). New eco-friendly FeS-modified biochar derived from peanut shells and walnut shells: a green synthesis approach for removal of lead. In Desalination And Water Treatment (Vol. 277, pp. 251–265). Desalination Publications. https://doi.org/10.5004/dwt.2022.29033 DOI: https://doi.org/10.5004/dwt.2022.29033

Mansurov, Z. A., Velasco, L. F., Lodewyckx, P., Doszhanov, E. O., & Azat, S. (2022). Modified Carbon Sorbents Based on Walnut Shell for Sorption of Toxic Gases. In Journal of Engineering Physics and Thermophysics (Vol. 95, Issue 6, pp. 1383–1392). Springer Science and Business Media LLC. https://doi.org/10.1007/s10891-022-02607-7 DOI: https://doi.org/10.1007/s10891-022-02607-7

Kumari, S., Rajput, V. D., Minkina, T., Rajput, P., Sharma, P., Verma, A. K., Agarwal, S., & Garg, M. C. (2022). Application of RSM for Bioremoval of Methylene Blue Dye from Industrial Wastewater onto Sustainable Walnut Shell (Juglans regia) Biomass. In Water (Vol. 14, Issue 22, p. 3651). MDPI AG. https://doi.org/10.3390/w14223651 DOI: https://doi.org/10.3390/w14223651

Hu, J., Shi, H., Zhan, C., Qiao, P., He, Y., & Liu, Y. (2022). Study on the Identification and Detection of Walnut Quality Based on Terahertz Imaging. In Foods (Vol. 11, Issue 21, p. 3498). MDPI AG. https://doi.org/10.3390/foods11213498 DOI: https://doi.org/10.3390/foods11213498

An, M., Cao, C., Wu, Z., & Luo, K. (2022). Detection Method for Walnut Shell-Kernel Separation Accuracy Based on Near-Infrared Spectroscopy. In Sensors (Vol. 22, Issue 21, p. 8301). MDPI AG. https://doi.org/10.3390/s22218301 DOI: https://doi.org/10.3390/s22218301

El Hamdouni, Y., El Hajjaji, S., Szabó, T., Trif, L., Felhősi, I., Abbi, K., Labjar, N., Harmouche, L., & Shaban, A. (2022). Biomass valorization of walnut shell into biochar as a resource for electrochemical simultaneous detection of heavy metal ions in water and soil samples: Preparation, characterization, and applications. In Arabian Journal of Chemistry (Vol. 15, Issue 11, p. 104252). Elsevier BV. https://doi.org/10.1016/j.arabjc.2022.104252 DOI: https://doi.org/10.1016/j.arabjc.2022.104252

Palaniyappan, S., Veeman, D., Sivakumar, N. K., & Natrayan, L. (2022). Development and optimization of lattice structure on the walnut shell reinforced PLA composite for the tensile strength and dimensional error properties. In Structures (Vol. 45, pp. 163–178). Elsevier BV. https://doi.org/10.1016/j.istruc.2022.09.023 DOI: https://doi.org/10.1016/j.istruc.2022.09.023

Xu, H., Han, Y., Wang, G., Deng, P., & Feng, L. (2022). Walnut shell biochar based sorptive remediation of estrogens polluted simulated wastewater: Characterization, adsorption mechanism and degradation by persistent free radicals. In Environmental Technology & Innovation (Vol. 28, p. 102870). Elsevier BV. https://doi.org/10.1016/j.eti.2022.102870 DOI: https://doi.org/10.1016/j.eti.2022.102870

Mahmoud, Y., Belhanche-Bensemra, N., & Safidine, Z. (2022). Impact of microcrystalline cellulose extracted from walnut and apricots shells on the biodegradability of Poly (lactic acid). In Frontiers in Materials (Vol. 9, p. 1005387). Frontiers Media SA. https://doi.org/10.3389/fmats.2022.1005387 DOI: https://doi.org/10.3389/fmats.2022.1005387

Yang, T., Hu, X., Zhang, P., Chen, X., Wang, W., Wang, Y., Liang, Q., Zhang, Y., & Huang, Q. (2019). Study of pre-treatment of quinoline in aqueous solution using activated carbon made from low-cost agricultural waste (walnut shells) modified with ammonium persulfate. In Water Science and Technology (Vol. 79, Issue 11, pp. 2086–2094). IWA Publishing. https://doi.org/10.2166/wst.2019.206 DOI: https://doi.org/10.2166/wst.2019.206

Hu, Q., Liu, J., Li, J., Liu, H., Dong, N., Geng, Y., Lu, Y., & Wang, Y. (2019). Phenolic composition and nutritional attributes of diaphragma juglandis fructus and shell of walnut (Juglans regia L.). In Food Science and Biotechnology (Vol. 29, Issue 2, pp. 187–196). Springer Science and Business Media LLC. https://doi.org/10.1007/s10068-019-00655-z DOI: https://doi.org/10.1007/s10068-019-00655-z

Liu, B., Liang, J., Zhao, D., Wang, K., Jia, M., & Wang, J. (2020). Morphological and Compositional Analysis of Two Walnut (Juglans regia L.) Cultivars Growing in China. In Plant Foods for Human Nutrition (Vol. 75, Issue 1, pp. 116–123). Springer Science and Business Media LLC. https://doi.org/10.1007/s11130-019-00794-y DOI: https://doi.org/10.1007/s11130-019-00794-y

Orue, A., Eceiza, A., & Arbelaiz, A. (2020). The use of alkali treated walnut shells as filler in plasticized poly(lactic acid) matrix composites. In Industrial Crops and Products (Vol. 145, p. 111993). Elsevier BV. https://doi.org/10.1016/j.indcrop.2019.111993 DOI: https://doi.org/10.1016/j.indcrop.2019.111993

Downloads

Published

2023-05-09

How to Cite

Sultanova, M., Dalabayev, A., Saduakas, A., Nurysh, A., Akzhanov, N., & Yakiyayeva, M. (2023). The potential of non-traditional walnut shells waste for the production of antioxidant reach extracts intended for the food industry. Potravinarstvo Slovak Journal of Food Sciences, 17, 391–404. https://doi.org/10.5219/1862