Studies on the chemical composition of fruits and seeds of Pseudocydonia sinensis (Thouin) C.K. Schneid

Authors

  • Olga Grygorieva M.M. Gryshko National Botanical Garden of the NAS of Ukraine, Department of Fruit Plants Acclimatisation, Timiryazevska 1, 04014, Kyiv, Ukraine, Tel.: +380671988082 https://orcid.org/0000-0003-1161-0018
  • Svitlana Klymenko M.M. Gryshko National Botanical Garden of the NAS of Ukraine, Department of Fruit Plants Acclimatisation, Timiryazevska 1, 04014, Kyiv, Ukraine, Tel.: +380671988082 https://orcid.org/0000-0002-9110-0466
  • Olena Vergun M.M. Gryshko National Botanical Garden of the NAS of Ukraine, Cultural Flora Department, Timiryazevska 1, 04014, Kyiv, Ukraine, Tel.: +380975398541 https://orcid.org/0000-0003-2924-1580
  • Olga Shelepova N. V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya, 4, 127276 Moscow, Russia, Tel.: +74999779136 https://orcid.org/0000-0003-2011-6054
  • Yulia Vinogradova N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya, 4, 127276 Moscow, Russia, Tel.: +74999779136
  • Inna Goncharovska Gryshko National Botanical Garden of the NAS of Ukraine, Department of Fruit Plants Acclimatisation, Timiryazevska 1, 04014, Kyiv, Ukraine, Tel.: +380962423728 https://orcid.org/0000-0002-9949-7541
  • Vladimíra Horčinová Sedláčková Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Biodiversity Conservation and Biosafety, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414779 https://orcid.org/0000-0001-5922-973X
  • Katarína Fatrcová Šramková Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Human Nutrition, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376414324 https://orcid.org/0000-0002-8696-4796
  • Ján Brindza Slovak University of Agricultural in Nitra, Faculty of Agrobiology and Food Resources, Institute of Biological Conservation and Biosafety, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia, Tel: +421376414787

DOI:

https://doi.org/10.5219/1583

Keywords:

Chinese quince, fruit, seed, chemical composition, nutrients

Abstract

Pseudocydonia sinensis (Thouin) C. K. Schneid. less known plant species in the Ukraine conditions, but the fruits were widely used in traditional Chinese medicine for the treatment of asthma, colds, sore throat, mastitis, rheumatoid arthritis, and tuberculosis. The content of protein, ash, and lipids in the seeds was found to be greater than in the pulp and peel. Monosaccharide analysis of neutral carbohydrate part showed the presence of two main sugars fructose and sucrose in the seeds, pulp, and peel. There is a higher beta-carotene content in the rind of the fruit than in the seeds and pulp. The total amount of fatty acids varied from sample to sample and contained mainly oleic acid, palmitic acid, linolenic acid, and linoleic acid. Linoleic acid in the seeds was 48.02% of total fatty acids, slightly less in the rind 42.70%. Palmitic acid, oleic acid, and linoleic acid in the pulp samples were 45.38, 21.32, and 14.93%, respectively. The total amount of amino acids found in the seeds was 105.0 g.kg-1 DM, including total essential amino acids (32.70 g.kg-1 DM). Glutamic acid was found in seeds to be the dominant free amino acid followed by aspartic acid and arginine in the seed. In our study, the antioxidant activity carried out by the DPPH method and measured by molybdenum reducing antioxidant power of peel, pulp and seeds were 9.41, 7.08, 6.21, and 158.81, 92.83, 78.58 mg TEAC.g-1 DM, respectively. Micro and macronutrients and amino acids predominated in the seeds, total fatty acids predominated in the pulp. The highest content of bioactive compounds (total polyphenols, flavonoid, and phenolic acid) and antioxidant activity was found in the peel. P. sinensis can be considered as a nourishing fruit with a copious potential with health-promoting roles and medicinal properties.

Downloads

Download data is not yet available.

References

Ajila, C. M., Naidu, K. A., Bhat, S. G., Prasada Rao, U. J. S. 2007. Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, vol. 105, no. 3, p. 982-988. https://doi.org/10.1016/j.foodchem.2007.04.052

Al-Snafi, E. A. 2016. The medical importance of Cydonia oblonga – a review. IOSR Journal of Pharmacy, vol. 6, p. 87-99.

Amirahmadi, Z., Abdollahi, H., Ayyari, M. 2017. Variations in flavonoid compounds of the leaves and fruits of quince (Cydonia oblonga Mill.) genotypes from northern regions of Iran. Iranian Journal of Horticultural Science, vol. 48, no. 2, p. 329-337. https://doi.org/10.22059/ijhs.2017.134753.859

Baroni, M. V., Gastaminza, J., Podio, S. N., Lingua, S. M., Wunderlin, A. D., Rovasio, R. J., Dotti, R., Rosso, J. C., Ghione, S., Ribotta, D. P. 2018. Changes in the antioxidant properties of quince fruit (Cydonia oblonga Miller) during jam production at industrial scale. Journal of Food Quality, vol 2018, p. 1-9. https://doi.org/10.1155/2018/1460758

Burčová, Z., Kreps, F., Schmidt, Š., Jablonsky, M., Haź, A., Sladková, A., Šurina, I. 2017. Composition of fatty acids ans tocopherols in peels, sedds and leaves of Sea bukthorn. Acta Himica Slovaca, vol. 10, no. 1, p. 29-34. https://doi.org/10.1515/acs-2017-0005

Cory, H., Passarelli, S., Szeto, J., Tamez, M., Mattei, J. 2018. the role of polyphenols in human health and food systems: a mini review. Frontiers in Nutrition, vol. 5, p. 87. https://doi.org/10.3389/fnut.2018.00087

CSN EN 12145. 1997. Fruit and vegetable juices - Determination of total dry matter - Weighing method by weight loss on drying.

ISO 659. 1998. Oilseeds — Determination of oil content (Reference method).

ČSN 560053. 1986. Determination of vitamin A and its provitamins.

Cubero, J., Toribio, F., Garrido, M., Hernández, M. T., Maynar, J., Barriga, C., Rodríguez, A. B. 2009. Assays of the Amino Acid Tryptophan in Cherries by HPLC-Fluorescence. Food Analytical Methods, vol. 3, no. 1, p. 36-39. https://doi.org/10.1007/s12161-009-9084-1

Choi, J. Y., Lee, S. M., Lee, H. J., Kim, Y.-S. 2018. Characterization of aroma-active compounds in Chinese quince ( Pseudocydonia sinensis Schneid) by aroma dilution analyses. Food Research International, vol. 105, p. 828-835. https://doi.org/10.1016/j.foodres.2017.12.015

Day, P. R. 1996. The biology of plant proteins. Critical Reviews in Food Science and Nutrition, vol. 36, no. S, p. 39-47. https://doi.org/10.1080/104083996609527758

Divis, P., Porizka, J., Vespalcova, M., Matejicek, A., Kaplan, J. 2015. Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. Journal of Elementology, vol. 20, no. 3, p. 549-557. https://doi.org/10.5601/jelem.2015.20.1.758

Essuman, E. K., Nagajyothi, P. C., Tettey, C. O. 2017. Antioxidant, Ferric iron chelation and antimicrobial activities of extracts of Pseudocydonia sinensis (Chinese Quince) fruit. Journal of Medicinal Plants Studies, vol. 5, p. 175-179.

Farmakopea Polska. 1999. Poland: The Polish Farmaceutical Society, p. 880–881.

Glew, R. H., Ayaz, F. A., Sanz, C., VanderJagt, D. J., Huang, H.-S., Chuang, L.-T., Strnad, M. 2003. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chemistry, vol. 83, no. 3, p. 363-369. https://doi.org/10.1016/s0308-8146(03)00097-9

Gomis, D. B., Lobo, A. M. P., Alvarez, M. D. G., Mangas Alonso, J. J. 1990. Determination of amino acids in apple extracts by high performance liquid chromatography. Chromatographia, vol. 29, p. 155-160. https://doi.org/10.1007/BF02268703

Grygorieva, O., Klymenko, S., Vergun, O., Mňahončakova, E., Brindza, J., Terentjeva, M., Ivanišova, E. 2020. Evaluation of the antioxidant activity and phenolic content of Chinese quince (Pseudocydonia sinensis Schneid.) fruit. Acta Scientiarum Polonorum, Technologia Alimentaria, vol. 19, no. 1, p. 25-36. https://doi.org/10.17306/J.AFS.2020.0738

Grygorieva, O., Kucharska, A. Z., Piórecki, N., Klymenko, S., Vergun, O., Brindza, J. 2018. Antioxidant activities and phenolic compounds in fruits of various genotypes of American persimmon (Diospyros virginiana L.). Acta Scientiarum Polonorum, Technologia Alimentaria, vol. 17, no. 2, p. 117-124. https://doi.org/10.17306/J.AFS.0544

Gupta, D. 2015. Methods for determination of antioxidant capacity: a review. International Journal of Pharmaceutical Sciences and Research, vol. 6, no. 2, p. 546-556. https://doi.org/10.13040/IJPSR.0975-8232.6(2).546-66

Hamauzu, Y., Inno, T., Kume, C., Irie, M., Hiramatsu, K. 2006. Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. Journal of Agricultural and Food Chemistry, vol. 54, no. 3, p. 765-772. https://doi.org/10.1021/jf052236y

Hamauzu, Y., Kishida, H., Yamazaki, N. 2018. Gastroprotective property of Pseudocydonia sinensis fruit jelly on the ethanol-induced gastric lesions in rats. Journal of Functional Foods, vol. 48, p. 275-282. https://doi.org/10.1016/j.jff.2018.07.026

Hamauzu, Y., Kume, C., Yasui, H., Fujita, T. 2007. Reddish coloration of Chinese quince (Pseudocydonia sinensis) procyanidins during heat treatment and effect on antioxidant and antiinfluenza viral activities. Journal of Agricultural and Food Chemistry, vol. 55, no. 4, p. 1221-126. https://doi.org/10.1021/jf061836+

Hamauzu, Y., Nakamura, K. 2014. Changes in plasma phenolic metabolites of rats administered different molecular-weight polyphenol fractions from Chinese Quince fruit extracts. Journal of Food Biochemistry, vol. 38, no. 4, p. 407-414. https://doi.org/10.1111/jfbc.12067

Hamauzu, Y., Yasui, H., Inno, T., Kume, C., Omanyuda, M. 2005. Phenolic profile, antioxidant property, and antiinfluenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. Journal of Agricultural and Food Chemistry, vol. 53, no. 4, p. 928-934. https://doi.org/10.1021/jf0494635

Horčinová Sedláčková, V., Grygorieva, O., Fatrcová Šramková, K., Vergun, O., Vinogradova, Y., Ivanišová, E., Brindza, J. 2018. The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 444-453. https://doi.org/10.5219/919

Horčinová Sedláčková, V., Grygorieva, O., Vergun, O. M., Vinogradova, Y., Brindza, J. 2019. Comparison of selected characteristics of cultivars and wild-growing genotypes of Sambucus nigra in Slovakia. Biosystems Diversity, vol. 27, no. 1, p. 56-61. https://doi.org/10.15421/011909

Chun, J. M., Nho, K. J., Lee, A. Y., Moon, B. C., Park, J. Y., Kim, H. K. 2012. A methanol fraction from Chaenomeles sinensis inhibits hepatocellular carcinoma growth in vitro and in vivo. Journal of the Korean Society for Applied Biological Chemistry, vol. 55, p. 335-341. https://doi.org/10.1007/s13765-012-1043-7

Chung, T. Y., Cho, D. S., Song, J. C. 1988. Volatile flavor components in Chinese quince fruits, Chaenomeles sinensis Koehne. Korean Journal of Food Science and Technology, vol. 20, p. 176-187.

Ivanišová, E., Blašková, M., Terentjeva, M., Grygorieva, O., Vergun, O., Brindza, J., Kačániová, M. 2020. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products. Acta Scientiarum Polonorum, Technologia Alimentaria, vol. 19, no. 2, p. 1-11. https://doi.org/10.17306/J.AFS.2020.0809

Ivanišová, E., Grygorieva, O., Abrahamová, V., Schubertova, Z., Terentjeva, M., Brindza, J. 2017. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). Journal of Berry Research, vol. 7, no. 4, p. 249-260. https://doi.org/10.3233/JBR-170162

Kabir, F., Sultana, S. M., Hossen, I., Kurnianta, H. 2015. Antimicrobial activities of ethanolic extracts of Chinese quince (Pseudocydonia sinensis) pomace. Bangladesh Research Publication Journal, vol. 11, p. 175-181.

Kim, C. S., Kwon, O. W., Kim, S. Y., Un Choi, S. U., Kim, K. H., Le, K. R. 2014. Five New Oxylipins from Chaenomeles sinensis. Lipids, vol. 49, no. 11, p. 1151-1159. https://doi.org/10.1007/s11745-014-3953-0

Klymenko, S., Grygorieva, O., Brindza, J. 2017. Less Known Species of Fruit Crops. Nitra, Slovakia : SUA, 76 p. ISBN 978-80-552-1765-9. http://doi.org/10.15414/2017.fe-9788055217659

Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., Piórecki, N. 2019. Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, vol. 3, p. 484-499.

Kumar, N., Goel, N. 2019. Phenolic acids: natural versatile molecules with promising therapeutic application. Biotechnology Reports, vol. 24, p. e00370. https://doi.org/10.1016/j.btre.2019.e00370

Kumar, V., Sharma, A., Kaur Kahli, S., Yadav, P., Bali, S., Bakshi, P., Parihar, R. D., Yuan, H., Yan, D., He, Y., Wang, J., Yang, Y., Bhardwai, R., Thukral, A. K., Zheng, B. 2019. Amino acids distribution economical important plants: a review. Biotechnology Research and Innovation, vol. 3, no. 2, p. 197-207. https://doi.org/10.1016/j.biori.2019.06.004

Leonel, M., Leonel, S., Tecchio, M. A., Mischan, M. M., Moura, M. F., Xavier, D. 2016. Characteristics of quince fruits cultivars (Cydonia oblonga Mill.) grown in Brazil. Australian Journal of Crop Science, vol. 10, no. 5, p. 711-716. https://doi.org/10.21475/ajcs.2016.10.05.p7425

Liu, H., Jiang, W., Cao, J., Ma, L. 2018. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties. Journal of Food Processing and Preservation, vol. 42, no. 6, p. e13624. https://doi.org/10.1111/jfpp.13624

Manzoor, M., Anwar, F., Saari, N., Ashraf, M. 2012. Variation of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules, vol. 17, no. 1, p. 390-407. https://doi.org/10.3390/molecules17010390

Matemu, A. O., Adeyemi, D., Nyoni, H., Mdee, L., Tshabalala, P., Mamba, B., Msagati, T. A. M. 2017. Fatty acid composition of dried fruits of Sclerocarya birrea, Diospyros blancoi and Landolphia kirkii. International Journal of Environmental Research and Public Health, vol. 14, no. 11, p. 1401. https://doi.org/10.3390/ijerph14111401

Mihara, S., Tateba, H., Nishimura, O., Machii, Y., Kishino, K. 1987. Volatile components of Chinese quince (Pseudocydonia sinensis Schneid). In Journal of Agricultural and Food Chemistry, vol. 35, no. 4, p. 532-537. https://doi.org/10.1021/jf00076a023

Monka, A., Grygorieva, O., Chlebo, P., Brindza, J. 2014. Morphological and antioxidant characteristics of quince (Cydonia oblonga Mill.) and chinese quince fruit (Pseudocydonia sinensis Schneid.). Potravinarstvo Slovak Journal of Food Sciences, vol. 8, no. 1, p. 333-340. https://doi.org/10.5219/415

Nam, J.-S., Jang, H.-L., Ha Rhee, Y. 2018. Nutritional compositions in roots, twigs, leaves, fruit pulp, and seeds from pawpaw (Asimina triloba [L.] Dunal) grown in Korea. Journal of Applied Botany and Food Quality, vol. 91, p. 47-55. https://doi.org/10.5073/JABFQ.2018.091.007

Nikolaieva, N., Kačániová, M., Collado González, J., Grygorieva, O., Nôžková, J. 2019. Determination of microbiological contamination, antibacterial and antioxidant activities of natural plant hazelnut (Corylus avellana L.) pollen. Journal of Environmental Science and Health, vol. 54, no. 6, p. 1-9. https://doi.org/10.1080/03601234.2019.1603756

Ogasanović, D. 2007. Amino acids content in the fruit of some plum cultivars and hybrids. Acta Horticulturae, vol. 734, p. 353-356. https://doi.org/10.17660/ActaHortic.2007.734.50

Oku, H., Ueda, Y., Ishiguro, K. 2003. Antipruritic Effects of the Fruits of Chaenomeles sinensis. Biological and Pharmaceutical Bulletin, vol. 26, no. 7, p. 1031-1034. https://doi.org/10.1248/bpb.26.1031

Osawa, K., Miyazaki, K., Imai, H., Arakawa, T., Yasuda, H., Takeya, K. 1999. Inhibitory effects of Chinese quince (Chaenomeles sinensis) on hyaluronidase and histamine release from rat mast cells. Natural Medicines, vol. 53, p. 188-193.

Osawa, K., Yasuda, H., Morita, H., Takeya, K., Itokawa, H. 1997. Antibacterial and antihemolytic activity of triterpenes and β-sitosterol isolated from Chinese quince (Chaenomeles sinensis). Natural Medicines, vol. 51, p. 365-367.

Panche, A. N., Diwan A. D., Chandra, S. R. 2016. Flavonoids: an overview. Journal of Nutritional Science, vol. 5, p. e47. https://doi.org/10.1017/jns.2016.41

Rasheed, M., Hussain, I., Rafiq, S., Hayat, I., Qayyum, A., Ishaq, S., Awan, M. 2018. Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. International Journal of Food Properties, vol. 21, no. 1, p. 2320-2327. https://doi.org/10.1080/10942912.2018.1514631

Rodríguez-Guisado, I., Hernãndez, F., Melgarejo, P., Légua, P., Martínez, R., Martínez, J. J. 2009. Chemical, morphological and organoleptical characterisation of five Spanish quince tree clones (Cydonia oblonga Miller). Sci Hortic., vol. 122, no. 3, p. 491-496.

Save and Grow. 2011. A policymaker's guide to the sustainable intensification of smallholder crop production. Roma, Italy : FAO. Available at: http://www.fao.org/3/i2215e/i2215e00.pdf

Sawai, R., Kuroda, K., Shibata, T., Gomyou, R., Osawa, K., Shimizu, K. 2008. Antiinfluenza virus activity of Chaenomeles sinensis. In Journal of Ethnopharmacology, vol. 118, no. 1, p. 108-112. https://doi.org/10.1016/j.jep.2008.03.013

Sawai-Kuroda, R., Kikuchi, S., Shimizu, Y. K., Sasaki, Y., Kuroda, K., Tanaka, T., Yamamoto, T., Sakurai, K., Shimizu, K. 2013. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. Journal of Ethnopharmacology, vol. 146, no. 3, p. 866-872. https://doi.org/10.1016/j.jep.2013.02.020

Sebei, K., Gnouma, A., Herchi, W., Sakouhi, F., Boukhchina, S. 2013. Lipids, proteins, phenolic compositions, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea L.) cultivated in Tunisia. Biological Research, vol. 46, no. 3, p. 257-263. https://doi.org/10.4067/S0716-97602013000300006

Shafii, Z. A., Basri, M., Malek, E. A., Ismail, M. 2017. Phytochemical and antioxidant properties of Manilkara zapota (L.) P roen fruit extracts and its formulations for cosmeuetical application. Asian J. Plant Sci. Res., vol. 7, p. 29-41.

Shelepova, O., Vinogradova, Y., Vergun, O., Grygorieva, O., Brindza, J. 2019. Invasive Solidago canadensis L. as a resource of valuable biological compounds. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 280-286. https://doi.org/10.5219/1125

Silva, B. M., Casal, S., Andrade, P. B., Seabra, R. M., Oliveira, M. B. P. P., Ferreira, M. A. 2004. Free amino acid composition of quince (Cydonia oblonga Mill.) fruit (pulp and peel) and jam. Journal of Agricultural and Food Chemistry, vol. 52, no. 5, p. 1201-1206. https://doi.org/10.1021/jf030564x

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 6, p. 144-158.

Suzuki, H. 1994. Encyclopedia of traditional oriental drugs. Tokyo, Japan : Ishiyaku.

Szot, I., Zhurba, M., Klymenko, S. 2020. Pro-health and functional properties of goji berry (Lycium spp.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, vol. 4, p. 134-145. https://doi.org/10.15414/agrobiodiversity.2020.2585-8246.134-145

Vinogradova, Y., Vergun, O., Grygorieva, O., Ivanišová, E., Brindza, J. 2020. Comparative analysis of antioxidant activity and phenolic compounds in the fruits of Aronia spp. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, 393-401. https://doi.org/10.5219/1360

Xue, Z., Feng, W., Cao, J., Cao, D., Jiang, W. 2009. Antioxidant activity and total phenolic contents in peel and pulp of Chinese jujube (Ziziphus jujube Mill.) fruits. J. Food Biochem., vol. 33, no. 5, p. 613-629. https://doi.org/10.1111/j.1745-4514.2009.00241.x

Yang, F., Huang, X., Zhang, C., Zhang, M., Huang, C., Yang, H. 2018. Amino acid composition and nutritional value evaluation of Chinese chestnut (Castanea mollissima Blume) and its protein subunit. RSC Advances, vol. 8, no. 5, p. 2653-2659. https://doi.org/10.1039/c7ra13007d

Zhou, Y., Zhao, W., Shang, F., Zhang, D. 2020. Development of bioactive components from Chaenomeles sinensis leaves. Thermal Science, vol. 24, no. 3, p. 1795-1802. https://doi.org/10.2298/TSCI190524066Z

Published

2021-04-28

How to Cite

Grygorieva, O., Klymenko, S., Vergun, O., Shelepova, O., Vinogradova, Y., Goncharovska, I., Horčinová Sedláčková, V., Fatrcová Šramková, K., & Brindza, J. (2021). Studies on the chemical composition of fruits and seeds of Pseudocydonia sinensis (Thouin) C.K. Schneid. Potravinarstvo Slovak Journal of Food Sciences, 15, 306–317. https://doi.org/10.5219/1583

Most read articles by the same author(s)

1 2 3 4 > >>