Antimicrobial activity of resveratrol and grape pomace extract


  • Simona Kunová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376415807
  • Soňa Felsöciová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376425813
  • Eva Tvrdá Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376414421
  • Atilla Kántor Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421376415815
  • Jana Žiarovská Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Plant Genetics and Breeding, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Margarita Terentjeva Latvia University of Agriculture, Faculty of Veterinary Medicine Institute of Food and Environmental Hygiene, K. Helmaņa iela 8, LV-3004, Jelgava, Latvia
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76, Nitra Slovakia



grape pomace extract, resveratrol, pathogenic bacteria and yeasts, antimicrobial activity


Resveratrol is commonly found in food and drinks, including red wine and grapes. Grape extracts have a potent antimicrobial activity in vitro. The antimicrobial activity of plant extracts is the base of their potential application in food preservation agents, pharmaceuticals, cosmetics, alternative drugs and natural therapies. The aim of our study was to evaluate the antimicrobial activity of resveratrol and Blue Frankish pomace extract against Grampositive and Gramnegative bacteria as well as yeasts from the genus Candida. Six bacterial strains (three Grampositive bacteria Staphylococcus aureus CCM 2461, Enterococcus faecalis CCM 4224 and Listeria monocytogenes CCM 4699; three Gramnegative bacteria Escherichia coli CCM 3988, Pseudomonas aeruginosa CCM 1959 and Salmonella enteritidis subsp. enteritidis CCM 4420) and three yeast strains (Candida albicans CCM 8186, Candida krusei CCM 8271 and Candida tropicalis CCM 8223) were evaluated using the antimicrobial assay. Pure resveratrol and grape pomace extracts of red variety Blue Frankish were used. Our results show that resveratrol and red grape pomace extract have a very good antimicrobial activity against Grampositive bacteria when compared with Gramnegative bacteria and yeasts.


Download data is not yet available.


Alvarez, M. V., Moreira, M. R., Ponce, A. 2012. Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. Journal of Food Safety, vol. 32, no. 3, p. 379-387. DOI:

Alvarez, M. V., Ponce, A. G., Moreira, M. D. R. 2013. Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT Food Science and Technology, vol. 50, no. 1, p. 78-87. DOI:

Augustine, N., Goel, A. K., Sivakumar, K. C., Kumar, R. A., Thomas S. 2014. Resveratrol–a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine, vol. 21, no. 3, p. 286-289. DOI:

Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., Orlien, V. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, vol. 49, p. 96-109. DOI:

CLSI. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA : Clincal and Laboratory Standards Institute. 25 p. ISBN 978-1-68440-033-1. Available at:

Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., Paliyath, G. 2014. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, vol. 165, p. 522-531. DOI:

Darra, N. E., Tannous, J., Mouncef, P. B., Palge, J., Yaghi, J., Vorobiev, E., Louka, N., Maroun, R. G. 2012. A Comparative study on antiradical and antimicrobial properties of red grapes extractsobtained from different Vitis vinifera varieties. Food and Nutrition Sciences, vol. 3, no. 10, p. 1420-1432. DOI:

Duarte, A., Alves, A. C., Ferreira, S., Silva, F., Domingues, F. C. 2015. Resveratrol inclusion complexes: antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Researche International, vol. 77, p. 244-250. DOI:

Ferreira, S., Domingues, F. 2016. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties. Journal of the Science Food and Agriculture, vol. 96, no. 13, p. 4531-4535. DOI:

Ferreira, S., Silva, F., Queiroz, J. A., Oleastro, M., Domingues, F. C. 2014. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: activity and effect on cellular functions. International Journal of Food Microbiology, vol. 180, p. 62-68. DOI:

González-Centeno, M. R., Jourdes, M., Femenia, A., ,Simal, S., Rosselló, C., Teissedre, P. L. 2013. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, vol. 61, no. 47, p. 11579-11587. DOI:

Gumienna, M., Lasik, M., Czarnecki, Z. 2011. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. International Journal of Food Sciences and Nutrition, vol. 62, no. 3, p. 226-233. DOI:

Hogan, S., Zhang, L., Li, J., Zoecklein, B., Zhou, K. 2009. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT - Food Science and Technology, vol. 42, no. 7, p. 1269-1274. DOI:

Chan, M. M. Y. 2002. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochemical Pharmacology, vol. 63, no. 2, p. 99-104. DOI:

Jakubcová, Z., Horky, P., Dostalova, L., Sochor, J., Tomaskova, L., Baron, M., Kalhotka, L., Zeman, L. 2015. Study of antioxidant and antimicrobial properties of grapevine seeds, grape and rosehip pressing. Potravinarstvo, vol. 9, no. 1, 382-387. DOI:

Jeandet, P., Douillt-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M., Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, vol. 50, no. 10, p. 2731-2741. DOI:

Kačániová, M., Terentjeva, M., Kántor, A., Ivanišová, E., Felsöciová, S., Puchalski, C., Kunová, S., Lopašovský, Ľ., Žiarovská, J. 2018. Antimicrobial activity of Vitis vinifera L. pomace extract. Scientific Papers: Animal Science and Biotechnologies, vol. 51, no. 1, p. 124-128.

Kim, H. I., Kim, J. A., Choi, E. J., Harris, J. B., Jeong, S. Y., Son, S. J., Kim, Y., Shin, O. S. 2014. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Bioscience, Biotechnology and Biochemistry, vol., 79, no. 3, p. 475-483. DOI:

Klancnik, A., Sikic Pogacar, M., Trost, K., Tusek Znidaric, M., Mozetic Vodopivec, B., Smole Mozina, S. 2016. Anti-campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. Journal of Applied Microbiology, vol. 122, no. 1, p. 65-77. DOI:

Kumar, S. N., Siji, J. V., Rajasekharan, K. N., Nambisan, B., Mohandas, C. 2012. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Letters of Applied Microbiology, vol. 54, no. 5, p. 410-417. DOI:

Lai, L. J., Chiu, J. M., Chiou, R. Y. 2017. Fresh preservation of alfalfa sprouts and mushroom slices by soaking with thymol and resveratrol solutions. Food Science and Nutrition, vol. 5, no. 3, p. 776-783. DOI:

Lee, W., Lee, D. G. 2017. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium. Biochemical and Biophysical Research Communications, vol. 489, no. 2, p. 228-234. DOI:

Liu, Y., Zhou, J., Qu, Y., Yang, X., Shi, G., Wang, X., Hong, Y., Drlica, K., Zhao, X. 2016. Resveratrol antagonizes antimicrobial lethality and stimulates recovery of bacterial mutants. PLoS ONE, vol. 16, no. 4, p. e0153023. DOI:

Ma, D. S. L., Tan, L. T. H., Chan, K. G., Yap, W. H., Pusparajah, P., Chuah, L. H., Ming, L. C., Khan, T. M., Lee, H. L., Goh, B. H. 2018. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Frontiers in Pharmacology, vol. 9, p. 102. DOI:

Makwana, S., Choudhary, R., Haddock, J., Kohli, P. 2015. In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. LWT - Food Science Technology, vol. 62, no. 2, p. 935-939. DOI:

Morán, A., Gutiérrez, S., Martínez-Blanco, H., Ferrero, M. A., Monteagudo-Mera, A., Rodríguez-Aparicio, L. B. 2014. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling, vol. 30, no. 10, p. 1175-1182. DOI:

Oliveira, A. R., Domingues, F. C., Ferreira, S. 2017. The influence of resveratrol adaptation on resistance to antibiotics, benzalkonium chloride, heat and acid stresses of Staphylococcus aureus and Listeria monocytogenes. Food Control, vol. 73, p. 1420-1425. DOI:

Ozkan, G., Sagdic, O., Baydar, N. G., Kurumahmutoglu, Z. 2004. Antibacterial activities and total phenolic contents of grape pomace extracts. Journal of Science of Food and Agriculture, vol. 84, no. 14, p. 1807-1811. DOI:

Paolillo, R., Carratelli, C. R., Rizzo, A. 2011. Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar Typhimurium. International Immunopharmacology, vol. 11, no. 2, p. 149-156. DOI:

Pareja, M. O., Casas, L., Fernández-Ponce, M., Mantell, C., Ossa, E. 2015. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules, vol. 20, no. 6, p. 9686-9702. DOI:

Parry, J. W., Li, H., Liu, J. R., Zhou, K., Zhang, L., Ren, S. 2011. Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, vol. 2, no. 6, p. 530-540. DOI:

Paulo, L., Ferreira, S., Gallardo, E., Queiroz, J. A., Domingues, F. 2010. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World Journal of Microbiology and Biotechnology, vol. 26, no. 8, p. 1533-1538. DOI:

Plumed-Ferrer, C., Väkeväinen, K., Komulainen, H., Rautiainen, M., Smeds, A., Raitanen, J. E., Eklund, P., Willfor, S., Alakomi, H. L., Saarela, M., von Wright, A. 2013. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International Journal of Food Microbiology, vol. 164, no. 1, p. 99-107. DOI:

Promgool, T., Pancharoen, O., Deachathai, S. 2014. Antibacterial and antioxidative compounds from Cassia alata Linn. Songklanakarin Journal of Science and Technology, vol. 36, no. 4, p. 459-463.

Ruberto, G., Renda, A., Daquino, C., Amico, V., Spatafora, C., Tringali, C., De Tommasi, N. 2007. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, vol. 100, no. 1, p. 203-210. DOI:

Selvarangan, R., Bui, U., Limaye, A. P., Cookson, B. T. 2003. Rapid identification of commonly encountered Candida species directly from blood culture bottles. Journal of Clinical Microbiology, vol. 41, no. 12, p. 5660-5664 DOI:

Seukep, J. A., Sandjo, L. P., Ngadjui, B. T., Kuete, V. 2016. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complementary and Alternative Medicine, vol. 16, no. 1, 193 p. DOI:

Silva, Â., Duarte, A., Sousa, S., Ramos, A., Domingues, F. C. 2016. Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. LWT - Food Science and Technology, vol. 73, p. 481-489. DOI:

Snopek, L., Mlček, J., Fic, V., Hlaváčová, I., Škrovánková, S., Fisera, M., Velichová, H., Ondrášová, M. 2018. Interaction of polyphenols and wine antioxidants with its sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, 180-185. DOI:

Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K. S, Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E. W., Lory, S., Olson, M. V. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, vol. 406, p. 959-964 DOI:

Subramanian, M., Soundar, S., Mangoli, S. 2016. DNA damage is a late event in resveratrol-mediated inhibition of Escherichia coli. Free Radical Research, vol. 50, no. 7, p. 708-719. DOI:

Surendran Nair, M., Lau, P., Belskie, K., Fancher, S., Chen, C. H., Karumathil, D. P., Yin, H. B., Liu, Y., Ma, F., Upadhyaya, I., Upadhyay, A., Mancini, R., Venkitanarayanan, K. 2016. Potentiating the heat inactivation of Escherichia coli O157:H7 in ground beef patties by natural antimicrobials. Frontiers in Microbiology, vol. 7, 15 p. DOI:

Tavares, L., Figueira, I., Macedo, D., McDougall, G. J., Leitão, M. C., Vieira, H. L., Stewart, D., Alves, P.M., Ferreira, R.B., Santos, C.N. 2012. Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, vol. 131, no. 4, p. 1443-1452. DOI:

Tegos, G., Stermitz, F. R., Lomovskaya, O., Lewis, K. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrobial Agents Chemotherapy, vol. 46, no. 10, p. 3133-3141. DOI:

Xu, Y., Burton, S., Kim, C., Sismour, E. 2015. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Science & Nutrition, vol. 4, no. 1, p. 125-133 DOI:

Zhou, K., Raffoul, J. J. 2012. Potential anticancer properties of grape antioxidants. Journal of Oncology, vol. 2012, p. 1-8. DOI:



How to Cite

Kunová, S. ., Felsöciová, S. ., Tvrdá, E. ., Ivanišová, E. ., Kántor, A. ., Žiarovská, J. ., Terentjeva, M. ., & Kačániová, M. . (2019). Antimicrobial activity of resveratrol and grape pomace extract. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 363–368.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

You may also start an advanced similarity search for this article.