Antimicrobial activity of resveratrol and grape pomace extract
DOI:
https://doi.org/10.5219/1054Keywords:
grape pomace extract, resveratrol, pathogenic bacteria and yeasts, antimicrobial activityAbstract
Resveratrol is commonly found in food and drinks, including red wine and grapes. Grape extracts have a potent antimicrobial activity in vitro. The antimicrobial activity of plant extracts is the base of their potential application in food preservation agents, pharmaceuticals, cosmetics, alternative drugs and natural therapies. The aim of our study was to evaluate the antimicrobial activity of resveratrol and Blue Frankish pomace extract against Grampositive and Gramnegative bacteria as well as yeasts from the genus Candida. Six bacterial strains (three Grampositive bacteria Staphylococcus aureus CCM 2461, Enterococcus faecalis CCM 4224 and Listeria monocytogenes CCM 4699; three Gramnegative bacteria Escherichia coli CCM 3988, Pseudomonas aeruginosa CCM 1959 and Salmonella enteritidis subsp. enteritidis CCM 4420) and three yeast strains (Candida albicans CCM 8186, Candida krusei CCM 8271 and Candida tropicalis CCM 8223) were evaluated using the antimicrobial assay. Pure resveratrol and grape pomace extracts of red variety Blue Frankish were used. Our results show that resveratrol and red grape pomace extract have a very good antimicrobial activity against Grampositive bacteria when compared with Gramnegative bacteria and yeasts.
Downloads
References
Alvarez, M. V., Moreira, M. R., Ponce, A. 2012. Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. Journal of Food Safety, vol. 32, no. 3, p. 379-387. https://doi.org/10.1111/j.1745-4565.2012.00390.x
Alvarez, M. V., Ponce, A. G., Moreira, M. D. R. 2013. Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT Food Science and Technology, vol. 50, no. 1, p. 78-87. https://doi.org/10.1016/j.lwt.2012.06.021
Augustine, N., Goel, A. K., Sivakumar, K. C., Kumar, R. A., Thomas S. 2014. Resveratrol–a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine, vol. 21, no. 3, p. 286-289. https://doi.org/10.1016/j.phymed.2013.09.010
Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., Orlien, V. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, vol. 49, p. 96-109. https://doi.org/10.1016/j.tifs.2016.01.006
CLSI. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA : Clincal and Laboratory Standards Institute. 25 p. ISBN 978-1-68440-033-1. Available at: https://clsi.org/media/2663/m100ed29_sample.pdf
Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., Paliyath, G. 2014. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, vol. 165, p. 522-531. https://doi.org/10.1016/j.foodchem.2014.05.135
Darra, N. E., Tannous, J., Mouncef, P. B., Palge, J., Yaghi, J., Vorobiev, E., Louka, N., Maroun, R. G. 2012. A Comparative study on antiradical and antimicrobial properties of red grapes extractsobtained from different Vitis vinifera varieties. Food and Nutrition Sciences, vol. 3, no. 10, p. 1420-1432. https://doi.org/10.4236/fns.2012.310186
Duarte, A., Alves, A. C., Ferreira, S., Silva, F., Domingues, F. C. 2015. Resveratrol inclusion complexes: antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Researche International, vol. 77, p. 244-250. https://doi.org/10.1016/j.foodres.2015.05.047
Ferreira, S., Domingues, F. 2016. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties. Journal of the Science Food and Agriculture, vol. 96, no. 13, p. 4531-4535. https://doi.org/10.1002/jsfa.7669
Ferreira, S., Silva, F., Queiroz, J. A., Oleastro, M., Domingues, F. C. 2014. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: activity and effect on cellular functions. International Journal of Food Microbiology, vol. 180, p. 62-68. https://doi.org/10.1016/j.ijfoodmicro.2014.04.004
González-Centeno, M. R., Jourdes, M., Femenia, A., ,Simal, S., Rosselló, C., Teissedre, P. L. 2013. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, vol. 61, no. 47, p. 11579-11587. https://doi.org/10.1021/jf403168k
Gumienna, M., Lasik, M., Czarnecki, Z. 2011. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. International Journal of Food Sciences and Nutrition, vol. 62, no. 3, p. 226-233. https://doi.org/10.3109/09637486.2010.532115
Hogan, S., Zhang, L., Li, J., Zoecklein, B., Zhou, K. 2009. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT - Food Science and Technology, vol. 42, no. 7, p. 1269-1274. https://doi.org/10.1016/j.lwt.2009.02.006
Chan, M. M. Y. 2002. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochemical Pharmacology, vol. 63, no. 2, p. 99-104. https://doi.org/10.1016/S0006-2952(01)00886-3
Jakubcová, Z., Horky, P., Dostalova, L., Sochor, J., Tomaskova, L., Baron, M., Kalhotka, L., Zeman, L. 2015. Study of antioxidant and antimicrobial properties of grapevine seeds, grape and rosehip pressing. Potravinarstvo, vol. 9, no. 1, 382-387. https://doi.org/10.5219/503
Jeandet, P., Douillt-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M., Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, vol. 50, no. 10, p. 2731-2741. https://doi.org/10.1021/jf011429s
Kačániová, M., Terentjeva, M., Kántor, A., Ivanišová, E., Felsöciová, S., Puchalski, C., Kunová, S., Lopašovský, Ľ., Žiarovská, J. 2018. Antimicrobial activity of Vitis vinifera L. pomace extract. Scientific Papers: Animal Science and Biotechnologies, vol. 51, no. 1, p. 124-128.
Kim, H. I., Kim, J. A., Choi, E. J., Harris, J. B., Jeong, S. Y., Son, S. J., Kim, Y., Shin, O. S. 2014. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Bioscience, Biotechnology and Biochemistry, vol., 79, no. 3, p. 475-483. https://doi.org/10.1080/09168451.2014.991685
Klancnik, A., Sikic Pogacar, M., Trost, K., Tusek Znidaric, M., Mozetic Vodopivec, B., Smole Mozina, S. 2016. Anti-campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. Journal of Applied Microbiology, vol. 122, no. 1, p. 65-77. https://doi.org/10.1111/jam.13315
Kumar, S. N., Siji, J. V., Rajasekharan, K. N., Nambisan, B., Mohandas, C. 2012. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Letters of Applied Microbiology, vol. 54, no. 5, p. 410-417. https://doi.org/10.1111/j.1472-765X.2012.03223.x
Lai, L. J., Chiu, J. M., Chiou, R. Y. 2017. Fresh preservation of alfalfa sprouts and mushroom slices by soaking with thymol and resveratrol solutions. Food Science and Nutrition, vol. 5, no. 3, p. 776-783. https://doi.org/10.1002/fsn3.458
Lee, W., Lee, D. G. 2017. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium. Biochemical and Biophysical Research Communications, vol. 489, no. 2, p. 228-234. https://doi.org/10.1016/j.bbrc.2017.05.138
Liu, Y., Zhou, J., Qu, Y., Yang, X., Shi, G., Wang, X., Hong, Y., Drlica, K., Zhao, X. 2016. Resveratrol antagonizes antimicrobial lethality and stimulates recovery of bacterial mutants. PLoS ONE, vol. 16, no. 4, p. e0153023. https://doi.org/10.1371/journal.pone.0153023
Ma, D. S. L., Tan, L. T. H., Chan, K. G., Yap, W. H., Pusparajah, P., Chuah, L. H., Ming, L. C., Khan, T. M., Lee, H. L., Goh, B. H. 2018. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Frontiers in Pharmacology, vol. 9, p. 102. https://doi.org/10.3389/fphar.2018.00102
Makwana, S., Choudhary, R., Haddock, J., Kohli, P. 2015. In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. LWT - Food Science Technology, vol. 62, no. 2, p. 935-939. https://doi.org/10.1016/j.lwt.2015.02.013
Morán, A., Gutiérrez, S., Martínez-Blanco, H., Ferrero, M. A., Monteagudo-Mera, A., Rodríguez-Aparicio, L. B. 2014. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling, vol. 30, no. 10, p. 1175-1182. https://doi.org/10.1080/08927014.2014.976207
Oliveira, A. R., Domingues, F. C., Ferreira, S. 2017. The influence of resveratrol adaptation on resistance to antibiotics, benzalkonium chloride, heat and acid stresses of Staphylococcus aureus and Listeria monocytogenes. Food Control, vol. 73, p. 1420-1425. https://doi.org/10.1016/j.foodcont.2016.11.011
Ozkan, G., Sagdic, O., Baydar, N. G., Kurumahmutoglu, Z. 2004. Antibacterial activities and total phenolic contents of grape pomace extracts. Journal of Science of Food and Agriculture, vol. 84, no. 14, p. 1807-1811. https://doi.org/10.1002/jsfa.1901
Paolillo, R., Carratelli, C. R., Rizzo, A. 2011. Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar Typhimurium. International Immunopharmacology, vol. 11, no. 2, p. 149-156. https://doi.org/10.1016/j.intimp.2010.10.019
Pareja, M. O., Casas, L., Fernández-Ponce, M., Mantell, C., Ossa, E. 2015. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules, vol. 20, no. 6, p. 9686-9702. https://doi.org/10.3390/molecules20069686
Parry, J. W., Li, H., Liu, J. R., Zhou, K., Zhang, L., Ren, S. 2011. Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, vol. 2, no. 6, p. 530-540. https://doi.org/10.4236/fns.2011.26076
Paulo, L., Ferreira, S., Gallardo, E., Queiroz, J. A., Domingues, F. 2010. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World Journal of Microbiology and Biotechnology, vol. 26, no. 8, p. 1533-1538. https://doi.org/10.1007/s11274-010-0325-7
Plumed-Ferrer, C., Väkeväinen, K., Komulainen, H., Rautiainen, M., Smeds, A., Raitanen, J. E., Eklund, P., Willfor, S., Alakomi, H. L., Saarela, M., von Wright, A. 2013. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International Journal of Food Microbiology, vol. 164, no. 1, p. 99-107. https://doi.org/10.1016/j.ijfoodmicro.2013.04.001
Promgool, T., Pancharoen, O., Deachathai, S. 2014. Antibacterial and antioxidative compounds from Cassia alata Linn. Songklanakarin Journal of Science and Technology, vol. 36, no. 4, p. 459-463.
Ruberto, G., Renda, A., Daquino, C., Amico, V., Spatafora, C., Tringali, C., De Tommasi, N. 2007. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, vol. 100, no. 1, p. 203-210. https://doi.org/10.1016/j.foodchem.2005.09.041
Selvarangan, R., Bui, U., Limaye, A. P., Cookson, B. T. 2003. Rapid identification of commonly encountered Candida species directly from blood culture bottles. Journal of Clinical Microbiology, vol. 41, no. 12, p. 5660-5664 https://doi.org/10.1128/JCM.41.12.5660-5664.2003
Seukep, J. A., Sandjo, L. P., Ngadjui, B. T., Kuete, V. 2016. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complementary and Alternative Medicine, vol. 16, no. 1, 193 p. https://doi.org/10.1186/s12906-016-1173-2
Silva, Â., Duarte, A., Sousa, S., Ramos, A., Domingues, F. C. 2016. Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. LWT - Food Science and Technology, vol. 73, p. 481-489. https://doi.org/10.1016/j.lwt.2016.06.043
Snopek, L., Mlček, J., Fic, V., Hlaváčová, I., Škrovánková, S., Fisera, M., Velichová, H., Ondrášová, M. 2018. Interaction of polyphenols and wine antioxidants with its sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, 180-185. https://doi.org/10.5219/899
Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K. S, Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E. W., Lory, S., Olson, M. V. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, vol. 406, p. 959-964 https://doi.org/10.1038/35023079
Subramanian, M., Soundar, S., Mangoli, S. 2016. DNA damage is a late event in resveratrol-mediated inhibition of Escherichia coli. Free Radical Research, vol. 50, no. 7, p. 708-719. https://doi.org/10.3109/10715762.2016.1169404
Surendran Nair, M., Lau, P., Belskie, K., Fancher, S., Chen, C. H., Karumathil, D. P., Yin, H. B., Liu, Y., Ma, F., Upadhyaya, I., Upadhyay, A., Mancini, R., Venkitanarayanan, K. 2016. Potentiating the heat inactivation of Escherichia coli O157:H7 in ground beef patties by natural antimicrobials. Frontiers in Microbiology, vol. 7, 15 p. https://doi.org/10.3389/fmicb.2016.00015
Tavares, L., Figueira, I., Macedo, D., McDougall, G. J., Leitão, M. C., Vieira, H. L., Stewart, D., Alves, P.M., Ferreira, R.B., Santos, C.N. 2012. Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, vol. 131, no. 4, p. 1443-1452. https://doi.org/10.1016/j.foodchem.2011.10.025
Tegos, G., Stermitz, F. R., Lomovskaya, O., Lewis, K. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrobial Agents Chemotherapy, vol. 46, no. 10, p. 3133-3141. https://doi.org/10.1128/AAC.46.10.3133-3141.2002
Xu, Y., Burton, S., Kim, C., Sismour, E. 2015. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Science & Nutrition, vol. 4, no. 1, p. 125-133 https://doi.org/10.1002/fsn3.264
Zhou, K., Raffoul, J. J. 2012. Potential anticancer properties of grape antioxidants. Journal of Oncology, vol. 2012, p. 1-8. https://doi.org/10.1155/2012/803294
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).