Effects of laying hens housing system on eggs microbial contamination


  • Ján Petrovič Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Animal Husbandry, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia https://orcid.org/0000-0002-3659-0087
  • Martin Mellen Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Animal Husbandry, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
  • Natália Čmiková Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
  • Marianna Schwarzová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, Tel.: +421 37 641 4352
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia, University of Economics and Human Sciences in Warsaw, School of Medical and Health Sciences, Okopowa 59, Warszawa, 01 043, Poland, Tel.: +421 37 641 4715 https://orcid.org/0000-0002-4460-0222




total count of bacteria, coliform bacteria, Salmonella spp., mass spectrometry, microbiota, eggs


Microorganisms can contaminate eggs at many stages of production, handling, preparation, and consumption. The aim of our study was the microbiological quality of the internal contents of eggs from different layer housing systems. Total bacteria, coliforms, and Salmonella spp. were isolated and identified by mass spectrometry. Total bacterial counts were isolated on Plate count agar for 48 hours at 30 °C, coliforms on Violet red bile lactose agar for 24 hours at 37 °C and Salmonella spp. on Xylose lysine deoxycholate agar for 24 hours at 37 °C. The lowest total bacterial counts were found in the cage-rearing system and the highest in the aviary-rearing system for hens housing. The number of microorganisms was evaluated on days 0. and 21. Twenty species, eighteen genera, and sixteen families were isolated from enriched cages in 0 days, while three families, three genera, and five species were isolated in 21 days, according to egg content samples. Thirteen families, sixteen genera, and twenty species were isolated from egg contents samples in the deep litter on day zero and day twenty-one, respectively, by third families, fourth genera, and seventh species. Nine families, twenty genera, and fifteen species were identified in aviaries using egg content samples on day 0, and three families, three genera, and five species on day 21. Ralstonia pickettii was the most isolated species among all samples.


Download data is not yet available.


Metrics Loading ...


Pires, P. G. da S., Bavaresco, C., Prato, B. S., Wirth, M. L., & Moraes, P. de O. (2021). The relationship between egg quality and hen housing systems - A systematic review. In Livestock Science (Vol. 250, p. 104597). Elsevier BV. https://doi.org/10.1016/j.livsci.2021.104597 DOI: https://doi.org/10.1016/j.livsci.2021.104597

Gautron, J., Réhault-Godbert, S., Van de Braak, T. G. H., & Dunn, I. C. (2021). Review: What are the challenges facing the table egg industry in the next decades and what can be done to address them? In Animal (Vol. 15, p. 100282). Elsevier BV. https://doi.org/10.1016/j.animal.2021.100282 DOI: https://doi.org/10.1016/j.animal.2021.100282

Park, J. H., Kang, M. S., Park, K. M., Lee, H. Y., Ok, G. S., Koo, M. S., Hong, S. I., & Kim, H. J. (2020). A dynamic predictive model for the growth of Salmonella spp. and Staphylococcus aureus in fresh egg yolk and scenario-based risk estimation. In Food Control (Vol. 118, p. 107421). Elsevier BV. https://doi.org/10.1016/j.foodcont.2020.107421 DOI: https://doi.org/10.1016/j.foodcont.2020.107421

Tian, L., Hu, S., Jia, J., Tan, W., Yang, L., Zhang, Q., Liu, X., & Duan, X. (2021). Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. In Food Chemistry (Vol. 341, p. 128163). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.128163 DOI: https://doi.org/10.1016/j.foodchem.2020.128163

Wilson, P. B. (2017). Recent advances in avian egg science: A review. In Poultry Science (Vol. 96, Issue 10, pp. 3747–3754). Elsevier BV. https://doi.org/10.3382/ps/pex187 DOI: https://doi.org/10.3382/ps/pex187

Englmaierová, M., Tůmová, E., Charvátová, V., & Skřivan, M. (2014). Effects of laying hens housing system on laying performance, egg quality characteristics, and egg microbial contamination. In Czech Journal of Animal Science (Vol. 59, Issue 8, pp. 345–352). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/7585-cjas DOI: https://doi.org/10.17221/7585-CJAS

Samiullah, Roberts, J. R., & Chousalkar, K. K. (2014). Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens. In Journal of Applied Poultry Research (Vol. 23, Issue 1, pp. 59–70). Elsevier BV. https://doi.org/10.3382/japr.2013-00805 DOI: https://doi.org/10.3382/japr.2013-00805

Tomczyk, Ł., Stępień, Ł., Urbaniak, M., Szablewski, T., Cegielska-Radziejewska, R., & Stuper-Szablewska, K. (2018). Characterisation of the Mycobiota on the Shell Surface of Table Eggs Acquired from Different Egg-Laying Hen Breeding Systems. In Toxins (Vol. 10, Issue 7, p. 293). MDPI AG. https://doi.org/10.3390/toxins10070293 DOI: https://doi.org/10.3390/toxins10070293

Tomczyk, Ł., Szablewski, T., Stuper-Szablewska, K., Nowaczewski, S., & Cegielska-Radziejewska, R. (2019). The influence of the conditions of acquisition and storage of table eggs on changes in their quality and the presence of mycobiota and Fusarium mycotoxins. In Poultry Science (Vol. 98, Issue 7, pp. 2964–2971). Elsevier BV. https://doi.org/10.3382/ps/pez156 DOI: https://doi.org/10.3382/ps/pez156

Rodríguez-Navarro, A. B., Domínguez-Gasca, N., Muñoz, A., & Ortega-Huertas, M. (2013). Change in the chicken eggshell cuticle with hen age and egg freshness. In Poultry Science (Vol. 92, Issue 11, pp. 3026–3035). Elsevier BV. https://doi.org/10.3382/ps.2013-03230 DOI: https://doi.org/10.3382/ps.2013-03230

Guillier, L., Thébault, A., Fravalo, P., Mughini-Gras, L., Jourdan-da Silva, N., David, J., Kooh, P., Cadavez, V., & Gonzales-Barron, U. (2021). Risk factors for sporadic salmonellosis: a systematic review and meta-analysis. In Microbial Risk Analysis (Vol. 17, p. 100138). Elsevier BV. https://doi.org/10.1016/j.mran.2020.100138 DOI: https://doi.org/10.1016/j.mran.2020.100138

Mughini-Gras, L., Enserink, R., Friesema, I., Heck, M., van Duynhoven, Y., & van Pelt, W. (2014). Risk Factors for Human Salmonellosis Originating from Pigs, Cattle, Broiler Chickens and Egg Laying Hens: A Combined Case-Control and Source Attribution Analysis. In Y.-F. Chang (Ed.), PLoS ONE (Vol. 9, Issue 2, p. e87933). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0087933 DOI: https://doi.org/10.1371/journal.pone.0087933

Gast, R. K., Regmi, P., Guraya, R., Jones, D. R., Anderson, K. E., & Karcher, D. M. (2019). Contamination of eggs by Salmonella Enteritidis in experimentally infected laying hens of four commercial genetic lines in conventional cages and enriched colony housing. In Poultry Science (Vol. 98, Issue 10, pp. 5023–5027). Elsevier BV. https://doi.org/10.3382/ps/pez222 DOI: https://doi.org/10.3382/ps/pez222

Sharaf Eddin, A., Ibrahim, S. A., & Tahergorabi, R. (2019). Egg quality and safety with an overview of edible coating application for egg preservation. In Food Chemistry (Vol. 296, pp. 29–39). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.05.182

Sharaf Eddin, A., Ibrahim, S. A., & Tahergorabi, R. (2019). Egg quality and safety with an overview of edible coating application for egg preservation. In Food Chemistry (Vol. 296, pp. 29–39). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.05.182 DOI: https://doi.org/10.1016/j.foodchem.2019.05.182

Rzedzicki, J., & Stępień-Pyśniak, D. (2009). Antimicrobial defence mechanisms of chicken eggs and possibilities for their use in protecting human and animal health. In Annales UMCS, Medicina Veterinaria (Vol. 64, Issue 2, pp. 1–8). Walter de Gruyter GmbH. https://doi.org/10.2478/v10082-009-0004-7 DOI: https://doi.org/10.2478/v10082-009-0004-7

Berardinelli, A., Ragni, L., Giunchi, A., Gradari, P., & Guarnieri, A. (2008). Physical-Mechanical Modifications of Eggs for Food-Processing During Storage. In Poultry Science (Vol. 87, Issue 10, pp. 2117–2125). Elsevier BV. https://doi.org/10.3382/ps.2007-00216 DOI: https://doi.org/10.3382/ps.2007-00216

Rehault-Godbert, S., Baron, F., Mignon-Grasteau, S., Labas, V., Gautier, M., Hincke, M. T., & Nys, Y. (2010). Effect of Temperature and Time of Storage on Protein Stability and Anti-Salmonella Activity of Egg White. In Journal of Food Protection (Vol. 73, Issue 9, pp. 1604–1612). Elsevier BV. https://doi.org/10.4315/0362-028x-73.9.1604 DOI: https://doi.org/10.4315/0362-028X-73.9.1604

Samli, H. E., Agma, A., & Senkoylu, N. (2005). Effects of Storage Time and Temperature on Egg Quality in Old Laying Hens. In Journal of Applied Poultry Research (Vol. 14, Issue 3, pp. 548–553). Elsevier BV. https://doi.org/10.1093/japr/14.3.548 DOI: https://doi.org/10.1093/japr/14.3.548

Silversides, F. G., & Budgell, K. (2004). The Relationships Among Measures of Egg Albumen Height, pH, and Whipping Volume. In Poultry Science (Vol. 83, Issue 10, pp. 1619–1623). Elsevier BV. https://doi.org/10.1093/ps/83.10.1619 DOI: https://doi.org/10.1093/ps/83.10.1619

Gao, D., Qiu, N., Liu, Y., & Ma, M. (2016). Comparative proteome analysis of egg yolk plasma proteins during storage. In Journal of the Science of Food and Agriculture (Vol. 97, Issue 8, pp. 2392–2400). Wiley. https://doi.org/10.1002/jsfa.8052 DOI: https://doi.org/10.1002/jsfa.8052

ISO, 4833-2:2013. (n.d.). ISO 4833-2:2013(en), Microbiology of the food chain—Horizontal method for the enumeration of microorganisms—Part 2: Colony count at 30 degrees C by the surface plating technique.

ISO 4832:2006. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of coliforms. Colony-count technique.

ISO 6579-1:2017. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp.

Kačániová, M., Klūga, A., Kántor, A., Medo, J., Žiarovská, J., Puchalski, C., & Terentjeva, M. (2019). Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. In Microbial Pathogenesis (Vol. 132, pp. 313–318). Elsevier BV. https://doi.org/10.1016/j.micpath.2019.04.024 DOI: https://doi.org/10.1016/j.micpath.2019.04.024

van Veelen, H. P. J., Salles, J. F., & Tieleman, B. I. (2018). Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. In The ISME Journal (Vol. 12, Issue 5, pp. 1375–1388). Springer Science and Business Media LLC. https://doi.org/10.1038/s41396-018-0067-3 DOI: https://doi.org/10.1038/s41396-018-0067-3

Holt, P. S., Davies, R. H., Dewulf, J., Gast, R. K., Huwe, J. K., Jones, D. R., Waltman, D., & Willian, K. R. (2011). The impact of different housing systems on egg safety and quality. In Poultry Science (Vol. 90, Issue 1, pp. 251–262). Elsevier BV. https://doi.org/10.3382/ps.2010-00794 DOI: https://doi.org/10.3382/ps.2010-00794

Buhr, R. J., Hannah, J. F., Wilson, J. L., Cox, N. A., Richardson, L. J., Cason, J. A., & Musgrove, M. T. (2009). Eggshell bacteria levels of non-washed and washed eggs from caged and cage-free hens. In World Poultry Science Association (pp. 1–7). WPSA.

De Reu, K., Grijspeerdt, K., Heyndrickx, M., Zoons, J., De Baere, K., Uyttendaele, M., Debevere, J., & Herman, L. (2005). Bacterial eggshell contamination in conventional cages, furnished cages and aviary housing systems for laying hens. In British Poultry Science (Vol. 46, Issue 2, pp. 149–155). Informa UK Limited. https://doi.org/10.1080/00071660500065359 DOI: https://doi.org/10.1080/00071660500065359

Galvão, J. A., Biondo, A. W., Possebon, F. S., Spina, T. L. B., Correia, L. B. N., Zuim, C. V., Guerra Filho, J. B. P., Pantoja, J. C. F., & Pinto, J. P. D. A. N. (2018). Microbiological vulnerability of eggs and environmental conditions in conventional and free-range housing systems. In Semina: Ciências Agrárias (Vol. 39, Issue 1, p. 133). Universidade Estadual de Londrina. https://doi.org/10.5433/1679-0359.2018v39n1p133 DOI: https://doi.org/10.5433/1679-0359.2018v39n1p133

Jones, D. R., Cox, N. A., Guard, J., Fedorka-Cray, P. J., Buhr, R. J., Gast, R. K., Abdo, Z., Rigsby, L. L., Plumblee, J. R., Karcher, D. M., Robison, C. I., Blatchford, R. A., & Makagon, M. M. (2015). Microbiological impact of three commercial laying hen housing systems. In Poultry Science (Vol. 94, Issue 3, pp. 544–551). Elsevier BV. https://doi.org/10.3382/ps/peu010 DOI: https://doi.org/10.3382/ps/peu010

Singh, R., Cheng, K. M., & Silversides, F. G. (2009). Production performance and egg quality of four strains of laying hens kept in conventional cages and floor pens. In Poultry Science (Vol. 88, Issue 2, pp. 256–264). Elsevier BV. https://doi.org/10.3382/ps.2008-00237 DOI: https://doi.org/10.3382/ps.2008-00237

Capero, R., Yanguela, L., Lidon, M. D., & Hernandis, A. (2000). Calidad del huevo en jaulas enriquecidas. In Córdoba (pp. 61–80). University of Córdoba.

Capero, R., María, G., & Hernandis, A. (2001). Calidad del huevo en jaulas enriquecidas: Resultados en la fase final de puesta. In Córdoba (pp. 209–218). University of Córdoba.

Mallet, S., Guesdon, V., Ahmed, A. M. H., & Nys, Y. (2006). Comparison of eggshell hygiene in two housing systems: Standard and furnished cages. In British Poultry Science (Vol. 47, Issue 1, pp. 30–35). Informa UK Limited. https://doi.org/10.1080/00071660500468132 DOI: https://doi.org/10.1080/00071660500468132

Sauveur, B. (1991). Mode d’élevage des poules et quatité de l’oeuf de consommation. In INRAE Productions Animales (Vol. 4, Issue 2, pp. 123–130). Universite de Bordeaux. https://doi.org/10.20870/productions-animales.1991.4.2.4324 DOI: https://doi.org/10.20870/productions-animales.1991.4.2.4324

De Reu, K., Messens, W., Heyndrickx, M., Rodenburg, T. B., Uyttendaele, M., & Herman, L. (2008). Bacterial contamination of table eggs and the influence of housing systems. In World’s Poultry Science Journal (Vol. 64, Issue 1, pp. 5–19). Informa UK Limited. https://doi.org/10.1017/s0043933907001687 DOI: https://doi.org/10.1017/S0043933907001687

De Reu, K., Rodenburg, T. B., Grijspeerdt, K., Messens, W., Heyndrickx, M., Tuyttens, F. A. M., Sonck, B., Zoons, J., & Herman, L. (2009). Bacteriological contamination, dirt, and cracks of eggshells in furnished cages and noncage systems for laying hens: An international on-farm comparison. In Poultry Science (Vol. 88, Issue 11, pp. 2442–2448). Elsevier BV. https://doi.org/10.3382/ps.2009-00097 DOI: https://doi.org/10.3382/ps.2009-00097

Huneau-Salaün, A., Guinebretière, M., & Michel, V. (2014). Effect of substrate provision on performance and behaviour of laying hens in the pecking and scratching area of furnished cages. In British Poultry Science (Vol. 55, Issue 4, pp. 409–418). Informa UK Limited. https://doi.org/10.1080/00071668.2014.92508 DOI: https://doi.org/10.1080/00071668.2014.925086

De Reu, K., Grijspeerdt, K., Messens, W., Heyndrickx, M., Uyttendaele, M., Debevere, J., & Herman, L. (2006). Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. In International Journal of Food Microbiology (Vol. 112, Issue 3, pp. 253–260). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2006.04.011 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.04.011

Rossi, M., De Reu, K., & Ferrante, V. (2010). Will the move from conventional cage to alternative production systems for laying hens to impact egg quality and hen welfare? Proc. XIIIth Eur. Poultry Conf, Tours.

Rodenburg, T. B., Tuyttens, F. A. M., Sonck, B., De Reu, K., Herman, L., & Zoons, J. (2005). Welfare, Health, and Hygiene of Laying Hens Housed in Furnished Cages and in Alternative Housing Systems. In Journal of Applied Animal Welfare Science (Vol. 8, Issue 3, pp. 211–226). Informa UK Limited. https://doi.org/10.1207/s15327604jaws0803_5 DOI: https://doi.org/10.1207/s15327604jaws0803_5

Sokołowicz, Z., Kačániová, M., Dykiel, M., Augustyńska-Prejsnar, A., & Topczewska, J. (2023). Influence of Storage Packaging Type on the Microbiological and Sensory Quality of Free-Range Table Eggs. In Animals (Vol. 13, Issue 12, p. 1899). MDPI AG. https://doi.org/10.3390/ani13121899 DOI: https://doi.org/10.3390/ani13121899

Lee, S., La, T.-M., Lee, H.-J., Choi, I.-S., Song, C.-S., Park, S.-Y., Lee, J.-B., & Lee, S.-W. (2019). Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. In Scientific Reports (Vol. 9, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-019-43280-w DOI: https://doi.org/10.1038/s41598-019-43280-w

Ding, J., Dai, R., Yang, L., He, C., Xu, K., Liu, S., Zhao, W., Xiao, L., Luo, L., Zhang, Y., & Meng, H. (2017). Inheritance and Establishment of Gut Microbiota in Chickens. In Frontiers in Microbiology (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fmicb.2017.01967 DOI: https://doi.org/10.3389/fmicb.2017.01967

Pajurek, M., Pietron, W., Maszewski, S., Mikolajczyk, S., & Piskorska-Pliszczynska, J. (2019). Poultry eggs as a source of PCDD/Fs, PCBs, PBDEs and PBDD/Fs. In Chemosphere (Vol. 223, pp. 651–658). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2019.02.023 DOI: https://doi.org/10.1016/j.chemosphere.2019.02.023

Zhou, Q., Lan, F., Li, X., Yan, W., Sun, C., Li, J., Yang, N., & Wen, C. (2021). The Spatial and Temporal Characterization of Gut Microbiota in Broilers. In Frontiers in Veterinary Science (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fvets.2021.712226 DOI: https://doi.org/10.3389/fvets.2021.712226

Elokil, A. A., Abouelezz, K., Adetula, A. A., Ahmad, H. I., Mo, C., Sun, C., & Li, S. (2020). Investigation of the impact of gut microbiotas on fertility of stored sperm by types of hens. In Poultry Science (Vol. 99, Issue 2, pp. 1174–1184). Elsevier BV. https://doi.org/10.1016/j.psj.2019.10.048 DOI: https://doi.org/10.1016/j.psj.2019.10.048

Elokil, A. A., Magdy, M., Melak, S., Ishfaq, H., Bhuiyan, A., Cui, L., Jamil, M., Zhao, S., & Li, S. (2020). Faecal microbiome sequences in relation to the egg-laying performance of hens using amplicon-based metagenomic association analysis. In Animal (Vol. 14, Issue 4, pp. 706–715). Elsevier BV. https://doi.org/10.1017/s1751731119002428 DOI: https://doi.org/10.1017/S1751731119002428

Fikiin, K., Akterian, S., & Stankov, B. (2020). Do raw eggs need to be refrigerated along the food chain? In Trends in Food Science & Technology (Vol. 100, pp. 359–362). Elsevier BV. https://doi.org/10.1016/j.tifs.2020.04.003 DOI: https://doi.org/10.1016/j.tifs.2020.04.003

Saleh, G., El Darra, N., Kharroubi, S., & Farran, M. T. (2020). Influence of storage conditions on quality and safety of eggs collected from Lebanese farms. In Food Control (Vol. 111, p. 107058). Elsevier BV. https://doi.org/10.1016/j.foodcont.2019.10705 DOI: https://doi.org/10.1016/j.foodcont.2019.107058

Vlčková, J., Tůmová, E., Míková, K., Englmaierová, M., Okrouhlá, M., & Chodová, D. (2019). Changes in the quality of eggs during storage depending on the housing system and the age of hens. In Poultry Science (Vol. 98, Issue 11, pp. 6187–6193). Elsevier BV. https://doi.org/10.3382/ps/pez401 DOI: https://doi.org/10.3382/ps/pez401

Jones, D. R., Ward, G. E., Regmi, P., & Karcher, D. M. (2018). Impact of egg handling and conditions during extended storage on egg quality. In Poultry Science (Vol. 97, Issue 2, pp. 716–723). Elsevier BV. https://doi.org/10.3382/ps/pex351 DOI: https://doi.org/10.3382/ps/pex351




How to Cite

Petrovič, J., Mellen, M., Čmiková, N., Schwarzová, M., & Kačániová, M. (2024). Effects of laying hens housing system on eggs microbial contamination. Potravinarstvo Slovak Journal of Food Sciences, 18, 50–65. https://doi.org/10.5219/1938

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>