Microbiological quality of chicken breast meat after application of thyme and caraway essential oils


  • Simona Kunová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Lucia Zeleňáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľubomí­r Lopašovský Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Martin Mellen Hydina Slovakia, s. r. o., Nová Ľubovňa 505, 065 11 Nová Ľubovňa
  • Jozef Čapla Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Peter Zajác Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra




chicken meat, thyme, caraway, essential oils, microorganisms


The aim of the present study was to evaluate the effect of selected types of antimicrobial essential oils to the various groups of microorganisms during storage of chicken meat. The samples of chicken breast meat were used in the experiment. The number of lactobacilli, Pseudomonas spp., anaerobic plate count and Enterobacteriaceae after application of caraway and thyme essential oils (EO) at concentration 1% v/w in a combination with the ethylenediaminetetraacetate (EDTA) solution 1.5% w/w and vacuum packaging were evaluated. The samples were analyzed at 0, 4th, 8th, 12th and 16th day of storage of chicken meat at temperature 4 °C. Another aim was to determine the species of isolated microorganisms from samples of chicken meat by MALDI-TOF MS Biotyper (matrix assisted laser desorption ionization-time of flight mass spectrometry). The number of Lactobalillus spp. ranged from 1.35 log CFU.g-1 in all groups to 3.04 log CFU.g-1 on 0th day to 3.04 log CFU.g-1 on 4th day in control group stored in air. The Pseudomonas spp. was not found in all tested samples at the start of the experiment, the highest number of Pseudomonas spp. was in the control group on 16th day (2.68 log CFU.g-1). Presence of Pseudomonas spp. were not found during storage in groups after treatment with caraway and thyme EO. The values of anaerobic plate count ranged from 2.81 log CFU.g-1 on 4th day in control group with vacuum packaging to 5.19 log CFU.g-1 on 16th day in control group in air condition. The Enterobacteriaceae was not found in all tested samples on 0th day and ranged to 4.46 log CFU.g-1 on 12th day in control group in air condition. From Lactobacillus spp., the most often identified species was Lactobacillus paracasei, from genus Pseudomonas, there were identified Pseudomonas fluorescens in two cases. From anaerobic plate count, there were isolated Staphylococcus warneri from control goup stored in air condition, Kocuria rhizophila from control group with vacuum packaging, Staphylococcus warneri, Aeromonas salmonicida and Aeromonas popoffii from control group treated with EDTA, Staphylococcus hominis and Staphylococcus epidermidis from group treated with caraway essential oil.  From Enterobacteriaceae, the most bacteria were isolated from control group in air condition and from control group treated with EDTA.


Download data is not yet available.


Metrics Loading ...


Anhalt, J. P., Fenselau, C. 1975. Identification of bacteria using mass spectrometry. Analytical Chemistry, vol. 47, no. 2, p. 219-225. https://doi.org/10.1021/ac60352a007 DOI: https://doi.org/10.1021/ac60352a007

Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils - a review. Food and Chemical Toxicology, vol. 46, no. 2, p. 446-475. https://doi.org/10.1016/j.fct.2007.09.106 PMid:17996351 DOI: https://doi.org/10.1016/j.fct.2007.09.106

Boskovic, M., Baltic. Z. M., Ivanovic, J., Djuric, J., Loncina, J., Dokmanovic, M., Markovic, R. 2013. Use of essential oils in order to prevent foodborne illnesses caused by pathogens in meat. Tehnologija mesa, vol. 54, no. 1, p. 14-20. DOI: https://doi.org/10.5937/tehmesa1301014B

Boskovic, M., Zdravovic, N., Ivanovic, J., Janjic, J., Diordievic, J., Starcevic, M., Baltic, M. Z. 2015. Antimicrobial Activity of Thyme (Tymus vulgaris) and Oregano (Origanum vulgare) Essential Oils against Some Food-borne Microorganisms. Procedia Food Science, vol. 5, p. 18-21. https://doi.org/10.1016/j.profoo.2015.09.005 DOI: https://doi.org/10.1016/j.profoo.2015.09.005

Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, vol. 94, no. 3, p. 223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid:15246235 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Cardoso Pereira, P. M. C., Vicente, A. F. R. B. 2013. Meat nutritional composition and nutritive role in the human diet. Meat Science, vol. 93, no. 3, p. 586-92. https://doi.org/10.1016/j.meatsci.2012.09.018 PMid:23273468 DOI: https://doi.org/10.1016/j.meatsci.2012.09.018

Dorman, H. J. D., Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, vol. 88, no. 2, p. 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x PMid:10736000 DOI: https://doi.org/10.1046/j.1365-2672.2000.00969.x

Doulgeraki, A. I., Paramithiotis, S., Nychas, G. J. E. 2011. Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. International Journal of Food Microbiology, vol. 145, no. 1, p. 77-83. https://doi.org/10.1016/j.ijfoodmicro.2010.11.030 PMid:21216482 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.11.030

Ercolini, D., Russo, F., Nasi, A., Ferranti, P., Villani, F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoiling potential in vitro and in beef. Applied and Environmental Microbiology, vol. 75, no. 7, p. 1990-2001. https://doi.org/10.1128/AEM.02762-08 PMid:19201980 DOI: https://doi.org/10.1128/AEM.02762-08

Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., La Storia, A., Laghi, L., Mauriello, G., Guerzoni, M. E., Villani, F. 2011. Monitoring of microbial metabolites and bacterial diversity in beef stored in different packaging conditions. Applied Environmental Microbiology, vol. 77, no. 20, p. 7372-7381. https://doi.org/10.1128/AEM.05521-11 PMid:21803905 DOI: https://doi.org/10.1128/AEM.05521-11

Fernandez-Gines, J. M., Fernandez-Lopez, J., Sayas-Barbera, E., Perez-Alvarez, J.A. 2005. Meat products as functional foods: a review. Journal of Food Science, vol. 70, no. 2, p. 37-43. https://doi.org/10.1111/j.1365-2621.2005.tb07110.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb07110.x

Ghabraie, M., Vu, K. D., Tata, L., Salmieri, S. 2016. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. Monique Lacroix LWT - Food Science and Technology, vol. 66, p. 332-339. DOI: https://doi.org/10.1016/j.lwt.2015.10.055

Hillenkamp, F., Karas, M., Beavis, R. C., Chait, B. T. 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical Chemistry, vol. 63, no. 24, p. 1193A-1203A. https://doi.org/10.1021/ac00024a716 PMid:1789447 DOI: https://doi.org/10.1021/ac00024a716

Holley, R. A., Patel, D. 2005. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, vol. 22, no. 4, p. 273-292. https://doi.org/10.1016/j.fm.2004.08.006 DOI: https://doi.org/10.1016/j.fm.2004.08.006

Jääskeläinen, E., Hultman, J., Parshintsev, J., Riekkola, M. L., Björkroth, J. 2016. Development of spoilage bacterial community and volatile compounds in chilled beef under vacuum or high oxygen atmospheres. International Journal of Food Microbiology, vol. 223, p. 25-32. https://doi.org/10.1016/j.ijfoodmicro.2016.01.022 PMid:26874863 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.01.022

Jideani, V. A., Vogt, K. 2016. Antimicrobial packaging for extending the shelf life of bread - A review. Food Science and Nutrition, vol. 56, no. 8, p. 1313-1324. https://doi.org/10.1080/10408398.2013.768198 DOI: https://doi.org/10.1080/10408398.2013.768198

Johri, R. K. 2011. Cuminum cyminum and Carum carvi: an update. Pharmacognosy Review, vol. 5, no. 9, p. 63-72. https://doi.org/10.4103/0973-7847.79101 PMid:22096320 DOI: https://doi.org/10.4103/0973-7847.79101

Kluz, M., Terentjeva, M., Puchalski, C., Hutková, J., Kántor, A., Petrová, J., Mellen, M., Čuboň, J., Haščík, P., Kordiaka, R., Kunová, S., Kačániová, M. 2016. The extension of shelf-life of chicken meat after application of caraway and anise essential oils and vacuum packaging. Potravinarstvo, vol. 10, no. 1, p. 132-138. https://doi.org/10.5219/557 DOI: https://doi.org/10.5219/557

Kostaki, M., Giatrakou, V., Savvaidis, I. N., Kontominas, M. G. 2009. Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food Microbiology, vol. 26, no. 5, p. 475-482. https://doi.org/10.1016/j.fm.2009.02.008 PMid:19465243 DOI: https://doi.org/10.1016/j.fm.2009.02.008

Lambert, R. J. W., Skandamis, P. N., Coote, P. J., Nychas, G. J. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, vol. 91, no. 3, p. 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x PMid:11556910 DOI: https://doi.org/10.1046/j.1365-2672.2001.01428.x

Lebert, I., Begot, C., Lebert, A. 1998. Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8 - 7.0), water activity (0.97- 1.00) and temperature (7 - 25 °C). International Journal of Food Microbiology, vol. 39, no. 1-2, p. 53-60. https://doi.org/10.1016/S0168-1605(97)00116-5 DOI: https://doi.org/10.1016/S0168-1605(97)00116-5

Lv, F., Liang, H., Yuan, Q., Li, Ch. 2011. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, vol. 44, no. 9, p. 3057-3064. https://doi.org/10.1016/j.foodres.2011.07.030 DOI: https://doi.org/10.1016/j.foodres.2011.07.030

Mahmoud, S. S., Croteau, R. B. 2002. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends in Plant Science, vol. 7, no. 8, p. 366-373. https://doi.org/10.1016/S1360-1385(02)02303-8 DOI: https://doi.org/10.1016/S1360-1385(02)02303-8

Mandal, S., Debmandal, M. 2016. Thyme (Thymus vulgaris L.) Oils. Essential Oils in Food Preservation, Flavor and Safety, p. 825-834. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00094-8

Meredith, H., Valdramidis, V., Rotabakk, B. T., Sivertsvik, M., Mcdowell, D., BOLTON, D. J. 2014. Effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the shelf-life of chilled poultry fillets. Food Microbiology, vol. 44, p. 196-203. https://doi.org/10.1016/j.fm.2014.06.005 PMid:25084663 DOI: https://doi.org/10.1016/j.fm.2014.06.005

Patel, R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry, vol. 61, no. 1, p. 100-111. https://doi.org/10.1373/clinchem.2014.221770 PMid:25278500 DOI: https://doi.org/10.1373/clinchem.2014.221770

Patsias, A., Badeka, A. V., Savvaidis, I. N., Kontominas, M. G. 2008. Combined effect of freeze chilling, MAP on quality parameters of raw chicken fillets. Food Microbiology, vol. 25, no. 4, p. 575-581. https://doi.org/10.1016/j.fm.2008.02.008 DOI: https://doi.org/10.1016/j.fm.2008.02.008

Pennacchia, C., Ercolini, D., Villani, F. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, vol. 28, no. 1, p. 84-93. https://doi.org/10.1016/j.fm.2010.08.010 PMid:21056779 DOI: https://doi.org/10.1016/j.fm.2010.08.010

Raal, A., Arak, E., Orav, A., Ivask, K. 2003. Comparison of essential oil content of Matricaria recutita L. from different origins. Ars Pharmaceutica, vol. 44, no. 2, p. 159-165.

Samelis, J. 2006. Managing microbial spoilage in meat industry. In Blackburn, C. W. Food Spoilage Microorganisms. Cambridge : Woodhead Publishing Limited, p. 213-286. ISBN 9781845691417. DOI: https://doi.org/10.1533/9781845691417.2.213

Sofos, J. N. 2008. Challenges to meat safety in the 21st century. Meat science, vol. 78, no. 1-2, p. 3-13. https://doi.org/10.1016/j.meatsci.2007.07.027 PMid:22062090 DOI: https://doi.org/10.1016/j.meatsci.2007.07.027

Thippeswamy, N. B., Akhilender Naidu, K., Achur, R. N. 2013. Antioxidant and antibacterial properties of phenolic extract from Carum carvi L. Journal of Pharmacy Research, vol. 7, no. 4, p. 352-357. https://doi.org/10.1016/j.jopr.2013.03.028 DOI: https://doi.org/10.1016/j.jopr.2013.03.028

Ultee, A., Bennik, M. H. J., Moezelaar, R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, vol.68, no. 4, p. 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002 PMid:11916669 DOI: https://doi.org/10.1128/AEM.68.4.1561-1568.2002

Zhang, H., Wu, J., Guo, X. 2016. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellnes, vol. 5, no. 1, p. 39-48. https://doi.org/10.1016/j.fshw.2015.11.003 DOI: https://doi.org/10.1016/j.fshw.2015.11.003




How to Cite

Kunová, S. ., Zeleňáková, L. ., Lopašovský, Ľubomí­r ., Mellen, M. ., Čapla, J. ., Zajác, P. ., & Kačániová, M. . (2017). Microbiological quality of chicken breast meat after application of thyme and caraway essential oils. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 167–174. https://doi.org/10.5219/759

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 > >>