The microbiological quality of minced pork treated with garlic in combination with vacuum packaging

Authors

  • Simona Kunová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 5807 https://orcid.org/0000-0003-2240-1756
  • Peter Haščík Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Animal Products, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel: +421376414708 https://orcid.org/0000-0002-3402-5658
  • Ľubomír Lopašovský Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel: +421376415806
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit Growing, Viticulture and Enology, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4715, Rzeszow University, Institute of Food Technology and Nutrition, Department of Bioenergetics, Food Analysis and Microbiology, Cwiklinskiej 1, Rzeszow 35-601 Poland

DOI:

https://doi.org/10.5219/1585

Keywords:

packaging, total viable counts, coliform bacteria, Pseudomonas spp., minced pork

Abstract

The present study aimed to evaluate the microbial quality of minced pork treated with fresh garlic, dried garlic, and garlic oil in combination with vacuum packing. The growth of Total Viable Counts (TVC), Coliform Bacteria (CB), and Pseudomonas spp. were evaluated. The microbiological analyses were performed by the plate dilution method. The average value of TVC was 8.45 log CFU.g-1 in aerobically packed samples, 5.59 log CFU.g-1 in samples treated with garlic oil, 5.36 log CFU.g-1 in vacuum packed samples, and samples treated with dried garlic, and 4.98 log CFU.g-1 in samples treated with fresh garlic on 8th day of storage. The number of TVC was significantly lower in samples treated with fresh garlic compared to samples treated with dried garlic and garlic oil on the 8th day of storage (p <0.05). The average value of CB was 4.13 log CFU.g-1 in aerobically packed samples, 1.82 log CFU.g-1 in samples treated with garlic oil, the value of CB in vacuum packed samples, in samples treated with fresh garlic and also with dried garlic was lower than 1.00 log CFU.g-1 on 8th day of storage. The number of CB was significantly higher in aerobically packed samples and samples treated with garlic oil compared to vacuum-packed samples, samples treated with fresh garlic and dried garlic on the 8th day of storage (p <0.05). The average number of Pseudomonas spp. was 2.45 in aerobically packed samples, count of Pseudomonas spp. was lower than 1.00 log CFU.g-1 in vacuum packed samples and in the sample with garlic on the 8th day of storage. The number of Pseudomonas spp. was significantly higher in aerobically packed samples in comparison with vacuum-packed samples, samples with fresh garlic, dried garlic, and garlic oil (p <0.05).

Downloads

Download data is not yet available.

References

Atlas, R. M., Snyder, J. W. 2014. Handbook of media for clinical and public health microbiology. Florida, USA : CRC Press. Taylor & Francis Group, 578 p. ISBN 9780367379315.

Benkeblia, N. 2004. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Science and Technology, vol. 37, no. 2, p. 263-268. https://doi.org/10.1016/j.lwt.2003.09.001

Cao, Y., Gu, W., Zhang, J., Chu, Y., Ye, X., Hu, Y., Chen, J. 2013. Effects of chitosan, aqueous extract of ginger, onion and garlic on quality and shelf life of stewed-pork during refrigerated storage. Food Chemistry, vol. 141, no. 3, p. 1655-1660. https://doi.org/10.1016/j.foodchem.2013.04.084

Casaburi, A., Piombino, P., Nychas, G. J., Villani, F., Ercolini, D. 2015. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, vol. 45, p. 83-102. https://doi.org/10.1016/j.fm.2014.02.002

Doulgeraki, A.I., Ercolini, D., Villani, F., Nychas, G.-J. E. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, vol. 157, no. 2, p. 130-141. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020

Ejeta, G., Molla, B., Alemayehu, D., Muckle, A. 2004. Salmonella serotypes isolated from minced meat beef, mutton and pork in Addis Ababa, Ethiopia. Revue de Medecine Veterinaire, vol. 155, no. 11, p. 547-551.

Esmer, O. K., Irkin, R., Degirmencioglu, N., Degirmencioglu, A. 2011. The effects of modified atmosphere gas composition on microbiological criteria, color and oxidation values of minced beef meat. Meat Science, vol. 88, no. 2, p. 221-226. https://doi.org/10.1016/j.meatsci.2010.12.021

Fujisawa, H., Suma, K, Origuchi, K., Kumagai, H., Seki, T., Ariga, T. 2008. Biological and chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry, vol. 56, no. 11, p. 4229-4235. https://doi.org/10.1021/jf8000907

Gheisari, H. R., Ranjbar, V. R. 2012. Antioxidative and antimicrobial effects of garlic in ground camel meat. Turkish Journal of Veterinary and Animal Sciences, vol. 36, no. 1, p. 13-20. https://doi.org/10.3906/vet-1012-620

Gyawali, R., Ibrahim, S. A. 2014. Natural products as antimicrobial agents. Food Control, vol. 46, p. 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047

Harris, J., Cottrell, S., Plummer, S., Lloyd, D. 2001. Antimicrobial properties of Allium sativum (garlic). Journal of Microbiology and Biotechnology, vol. 57, no. 3, p. 282-286. https://doi.org/10.1007/s002530100722

Huang, S., Liu, B., Ge, D., Dai, J. 2017. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4 °C. Meat Science, vol. 125, p. 114-120. https://doi.org/10.1016/j.meatsci.2016.11.022

Hygreeva, D., Pandey, M. C., Radhakrishna, K. 2014. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Science, vol. 98, no. 1, p. 47-57. https://doi.org/10.1016/j.meatsci.2014.04.006

Kaczmarek, K. M., Muzolf-Panek, M., Rudzińska, M., Szablewski, T., Cegielska-Radziejewska, R. 2017. The effect of plant extracts on pork quality during storage. Italian Journal of Food Sciences, vol. 29, no. 4, p. 644-656. https://doi.org/10.14674/IJFS-807

Kačániová, M., Terentjeva, M., Puchalski, C., Petrová, J., Hutková, J., Kántor, A., Mellen, M., Čuboň, J., Haščík, P., Kluz, M., Kordiaka, R., Kunová, S. 2016. Microbiological quality of chicken thighs meat after application of essential oils combination, edta and vaccum packing. Potravinarstvo Slovak Journal of Food Sciences, vol. 10, no. 1, p. 107-113. https://doi.org/10.5219/548

Kim, W. J., Lee, K. A., Kim, K.-T., Chung, M.-S., Cho, S. W., Paik, H.-D. 2011. Antimicrobial effects of onion (allium cepa l.) peel extracts produced via subcritical water extraction against bacillus cereus strains as compared with ethanolic and hot water extraction. Food Science and Biotechnology, vol. 20, no. 4, p. 1101-1106. https://doi.org/10.1007/s10068-011-0149-8

Krisch, J., Pardi, Z., Tserennadmid, R., Papp, T., Vágvölgyi, C. 2010. Antimicrobial effects of commercial herbs, spices and essential oils in minced pork. Acta Biologica Szegediensis, vol. 54, no. 2, p. 131-134.

Kunová, S., Zeleňáková, L., Lopašovský, Ľ., Mellen, M., Čapla, J., Zajác, P., Kačániová, M. 2017. Microbiological quality of chicken breast meat after application of thyme and caraway essential oils. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 167-174. https://doi.org/10.5219/759

Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A, vol. 1112, p. 1-2, p. 3-22. https://doi.org/10.1016/j.chroma.2005.12.016

Lee, N. K., Paik, H. D. 2016. Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean Journal for Food Science of Animal Resources, vol. 36, no. 4, p. 547-557. https://doi.org/10.5851/kosfa.2016.36.4.547

Leong, J., Morel, P. C. H., Purchas, R. W.,Wilkinson, B. H. P. 2014. The production of pork with garlic flavor notes using garlic essential oil. Meat Science, vol. 84, no. 4, p. 699-705. https://doi.org/10.1016/j.meatsci.2009.11.006

Łopusiewicz, Ł., Jedra, F., Mizieińska, M. 2018. New poly(lactic acid) active packaging composite films incorporated with fungal melanin. Polymers, vol. 10, no. 4, p. 386. https://doi.org/10.3390/polym10040386

Mead, G. C., Adams, B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage. British Poultry Science, vol. 18, no. 6, p. 661-670. https://doi.org/10.1080/00071667708416418

Michalczyk, M., Macura, R., Banaś, J., Tesarowicz, I., Maciejaszek, I. 2015. Effect of adding oregano essential oil, garlic and tomato preparations separately and in combination on the stability of vacuum-packed minced pork during storage. Annals of Animal Science, vol. 15, no. 1, p. 221-235. https://doi.org/10.2478/aoas-2014-0065

Najjaa, H., Chekki, R., Elfalleh, W., Tlili, H., Jaballah, S., Bouzouita, N. 2020. Freeze-dried, oven-dried, and microencapsulation of essential oil from Allium sativum as potential preservative agents of minced meat. Food Science and Nutrition, vol. 8, no. 4, p. 1-9. https://doi.org/10.1002/fsn3.1487

Odeyemi, O .A., Alegbeleye, O. O., Strateva, M., Stratev, D. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, vol. 19, no. 2, p. 311-331. https://doi.org/10.1111/1541-4337.12526

Park, S. Y., Chin, K. B. 2014. Effect of fresh garlic on lipid oxidation and microbiological changes of pork patties during refrigerated storage. In Korean Journal for Food Science of Animal Resources, vol. 34, no. 5, p. 638-646. http://doi.org/10.5851/kosfa.2014.34.5.638

Park, S. Y., Yoo, S. S., Shim, J. H., Chin, K. B. 2008. Physicochemical properties, and antioxidant and antimicrobial effects of garlic and onion powder in fresh pork belly and loin during refrigerated storage. Journal of Food Science, vol. 73, no. 8, p. 577-584. https://doi.org/10.1111/j.1750-3841.2008.00896.x

Pennacchia, C., Ercolini, D., Villani, F. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, vol. 28, no. 1, p. 84-93. https://doi.org/10.1016/j.fm.2010.08.010

Queiroz, Y. S., Ishimoto, E. Y., Bastos, D. H. M., Sampaio, G. R., Torres, E. A. F. S. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chemistry, vol. 115, no. 1, p. 371-374. https://doi.org/10.1016/j.foodchem.2008.11.105

Rajmohan, S., Dodd, C. E. R., Waites, W. M. 2010. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, vol. 93, no. 2, p. 205-213. https://doi.org/10.1046/j.1365-2672.2002.01674.x

Sallam, K. I., Ishioroshi, M., and Samejima, K. 2004. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT-Food Science and Technology, vol. 37, no. 8, p. 849-855. https://doi.org/10.1016/j.lwt.2004.04.001

Sebranek, J. G., Sewalt, V. G. H., Robbins, K. L., Houser, T. A. 2005. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Science, vol. 69, no. 2, p. 289-296. https://doi.org/10.1016/j.meatsci.2004.07.010

Sohaib, M., Anjum, F. M., Arshad, M. S., Rahman, U. U. 2016. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology, vol. 53, no. 1, p. 19-30. https://doi.org/10.1007/s13197-015-1985-y

Stellato, G., Utter, D. R., Voorhis, A., De Angelis, M., Eren, A. M., Ercolini, D. 2017. A Few Pseudomonas Oligotypes Dominate in the Meat and Dairy Processing Environment. Front. Microbiol., vol. 8, 9 p. https://doi.org/10.3389/fmicb.2017.00264

STN 560100. 1968. Microbiological testing of food, consumer goods and the environment of food operations.

STN EN ISO 4833-1. 2014. Microbiology of food chain. Horizontal method for the enumeration of microorganisms. Part 1: Colony count at 30 degrees C by the pour plate technique.

STN EN ISO 9308-1. 2015. Water quality. Detection and enumeration of Escherichia coli and coliform bacteria. Part 1: Membrane filtration method (ISO 9308-1:2000).

STN ISO 7218. 2000. Microbiology of food and animal feeding stuffs. General rules for microbiological examination.

Stojanović-Radić, Z., Pejčić, M., Joković, N., Jokanović, M., Ivić, M., Šojić, B., Škaljac, S., Stojanović, P., Mihajilov-Krstev, T. 2018. Inhibition of Salmonella Enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control, vol. 90, p. 332-343. https://doi.org/10.1016/j.foodcont.2018.03.013

Viswanathan, V., Phadatare, A. G., Mukne, A. 2014. Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian Journal of Pharmaceutical Sciences, vol. 76, no. 3, p. 256-261.

Whitemore, B. B., Naidu, A. S. 2000. Thiosulfinates. In: Naidu, A. S. Natural food antimicrobial systems. Boca Raton, FL: CRC Press, p. 265-380. https://doi.org/10.1201/9781420039368

Zhang, H., Kong, B., Xiong, Y. L., Sun, X. 2009. Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4 °C. Meat Science, vol. 81, no. 4, p. 686-692. https://doi.org/10.1016/j.meatsci.2008.11.011

Zhao, F., Zhou, G., Ye, K., Wang, S., Xu, X., Li, C. 2015. Microbial changes in vacuum-packed chilled pork during storage. Meat Science, vol. 100, p. 145-149. https://doi.org/10.1016/j.meatsci.2014.10.004

Published

2021-05-28

How to Cite

Kunová, S., Haščík, P., Lopašovský, Ľubomír, & Kačániová, M. (2021). The microbiological quality of minced pork treated with garlic in combination with vacuum packaging. Potravinarstvo Slovak Journal of Food Sciences, 15, 453–459. https://doi.org/10.5219/1585

Most read articles by the same author(s)

1 2 3 4 5 6 > >>