Improving meat quality and safety: innovative strategies

Authors

  • Maksim Rebezov V. M. Gorbatov Federal Research Center for Food Systems, Department of Scientific Research, 26 Talalikhin Str., Moscow, 109316, Russia; Ural State Agrarian University, Department of Biotechnology and Food, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia Tel.: +79999002365 https://orcid.org/0000-0003-0857-5143
  • Mars Khayrullin K.G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Department of Scientific Research, 73 Zemlyanoy Val, Moscow, 109004, Russia, Tel.: +79049755219 https://orcid.org/0000-0003-1697-7281
  • Bahytkul Assenova Shakarim University, Department of Food Production Technology and Biotechnology, 20A Glinka Str., Semey, 071412, Kazakhstan, Tel.: +77076586117
  • Smolnikova Farida Shakarim University, Department of Food Production Technology and Biotechnology, 20A Glinka Str., Semey, 071412, Kazakhstan, Tel.: +77476207683
  • Dmitry Baydan K.G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Department of Scientific Research, 73 Zemlyanoy Val, Moscow, 109004, Russia
  • Larisa Garipova K.G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Department of Scientific Research, 73 Zemlyanoy Val, Moscow, 109004, Russia
  • Raisa Savkina Plekhanov Russian University of Economics, Department of Restaurant Business, 36 Stremyanny per, 117997, Moscow, Russia
  • Svetlana Rodionova K.G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Department of Scientific Research, 73 Zemlyanoy Val, Moscow, 109004, Russia

DOI:

https://doi.org/10.5219/1972

Keywords:

meat, quality, safety, meat processing, innovative strategies

Abstract

Ensuring meat products' quality and safety is paramount in today's food industry. This extended abstract delves into innovative strategies to enhance meat quality and safety throughout the production, processing, and distribution stages. The paper explores various cutting-edge approaches, technologies, and regulatory frameworks to mitigate risks and improve consumer confidence in meat products. The discussion begins with examining advancements in meat processing techniques, such as high-pressure processing (HPP), modified atmosphere packaging (MAP), and irradiation. These techniques are instrumental in reducing microbial contamination, extending shelf life, and preserving the nutritional integrity of meat products. Furthermore, the paper explores emerging technologies like nanotechnology and blockchain, which offer novel solutions for enhancing traceability, transparency, and accountability in the meat supply chain. Much of the paper discusses the role of quality control measures in ensuring meat safety and compliance with food safety regulations. From carcass inspection and microbiological testing to chemical residue analysis and packaging standards, rigorous quality control protocols are essential for identifying and mitigating potential hazards at every stage of meat production. Moreover, the paper highlights the importance of animal husbandry practices, feed management, and genetics in influencing meat quality attributes such as flavour, texture, and tenderness. Producers can enhance meat products' overall quality and palatability by implementing improved animal husbandry practices, optimizing feed formulations, and selectively breeding animals for desirable traits. In addition to technological advancements and quality control measures, the paper emphasizes the need for regulatory compliance and government oversight to uphold food safety standards. Ensuring adherence to regulations such as Hazard Analysis and Critical Control Points (HACCP) and implementing comprehensive food safety management systems are essential for safeguarding public health and consumer trust. In conclusion, this extended abstract provides a comprehensive overview of innovative strategies for improving meat quality and safety in the food industry. By embracing advancements in processing techniques, leveraging new technologies, implementing stringent quality control measures, and adhering to regulatory requirements, stakeholders can enhance the safety, integrity, and consumer perception of meat products in the marketplace.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hartog, L.d. and Nutreco. Global perspective on integrated pork production. 2005.

Ravensdale, J. T., Coorey, R., & Dykes, G. A. (2018). Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 3, pp. 615–632). Wiley. https://doi.org/10.1111/1541-4337.12339 DOI: https://doi.org/10.1111/1541-4337.12339

Leone, C., et al. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products. 2020.

Alemneh, T.A. and M. Getabalew. Factors Influencing the Growth and Development of Meat Animals. 2019.

Wu, X., Liang, X., Wang, Y., Wu, B., & Sun, J. (2022). Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review. In Foods (Vol. 11, Issue 22, p. 3713). MDPI AG. https://doi.org/10.3390/foods11223713 DOI: https://doi.org/10.3390/foods11223713

Jurčaga, L., Bobko, M., Kolesárová, A., Bobková, A., Demianová, A., Haščík, P., Belej, Ľ., Mendelová, A., Bučko, O., Kročko, M., & Čech, M. (2021). Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). In Foods (Vol. 10, Issue 12, p. 2957). MDPI AG. https://doi.org/10.3390/foods10122957 DOI: https://doi.org/10.3390/foods10122957

Jurcaga, L., Bobko, M., Haščík, P., Bobková, A., Demianová, A., Belej, L., Kročko, M., Mendelova, A., Čech, M., Herc, P., & Mesárošová, A. (2022). Effect of blackcurrant and kamchatka honeysuckle extracts on quality properties of raw-cooked meat product. In Journal of microbiology, biotechnology and food sciences (Vol. 12, Issue 3, p. e5349). Slovak University of Agriculture in Nitra. https://doi.org/10.55251/jmbfs.5349 DOI: https://doi.org/10.55251/jmbfs.5349

Akinwumi, A. O., Oshodi, O. A., Atanda, R. A., Ogunsola, O. M., Ayoola, S. J., Ajani, R. A., & Odeleye, B. D. (2022). Meat Quality of Noiler Chicken as Influenced by Dietary Natural Antioxidants Supplementations. In Journal of Applied Life Sciences International (pp. 46–62). Sciencedomain International. https://doi.org/10.9734/jalsi/2022/v25i5584 DOI: https://doi.org/10.9734/jalsi/2022/v25i5584

Munekata, P. E. S., Finardi, S., de Souza, C. K., Meinert, C., Pateiro, M., Hoffmann, T. G., Domínguez, R., Bertoli, S. L., Kumar, M., & Lorenzo, J. M. (2023). Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. In Sensors (Vol. 23, Issue 2, p. 672). MDPI AG. https://doi.org/10.3390/s23020672 DOI: https://doi.org/10.3390/s23020672

Faujan, N. H., Azizan, N., & Norlelawati Arifin. (2022). Proximate Composition and Sensory Preference of Beef Sausages with Unripe Jackfruit. In Malaysian Journal of Science Health & Technology (Vol. 8, Issue 2, pp. 9–13). Universiti Sains Islam Malaysia. https://doi.org/10.33102/2022249 DOI: https://doi.org/10.33102/2022249

GENETICS OF M EAT Q UALITY IN C A TTLE. 2015.

Gagaoua, M., Duffy, G., Alvarez, C., Burgess, C. M., Hamill, R., Crofton, E., Botinestean, C., Ferragina, A., Cafferky, J., Mullen, A. M., & Troy, D. (2022). Current research and emerging tools to improve fresh red meat quality. In Irish Journal of Agricultural and Food Research (Vol. 61, Issue 1). Compuscript, Ltd. https://doi.org/10.15212/ijafr-2020-0141 DOI: https://doi.org/10.15212/ijafr-2020-0141

Gonzalez, J. M., & Phelps, K. J. (2018). United States beef quality as chronicled by the National Beef Quality Audits, Beef Consumer Satisfaction Projects, and National Beef Tenderness Surveys — A review. In Asian-Australasian Journal of Animal Sciences (Vol. 31, Issue 7, pp. 1036–1042). Asian Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.18.0199 DOI: https://doi.org/10.5713/ajas.18.0199

Ardiansyah, A., Nugroho, A., & Meirinawati, H. (2023). Nutritional value and heavy metal content of crab meat and its byproduct white mud crab Scylla paramamosain. In Jurnal Ilmu dan Teknologi Kelautan Tropis (Vol. 15, Issue 1, pp. 1–12). Institut Pertanian Bogor. https://doi.org/10.29244/jitkt.v15i1.40215 DOI: https://doi.org/10.29244/jitkt.v15i1.40215

Talamini, E.; Malafaia, G.C. Traceability, transparency and assurance (TTA) systems implementation by the Brazilian exporter pork meat chain compared with other countries. African Journal of Business Management 2010, 4, 651-661.

Skelly, T. A. M., & Ditlevsen, K. (2024). Bad avocados, culinary standards, and knowable knowledge. Culturally appropriate rejections of meat reduction. In Journal of Consumer Culture. SAGE Publications. https://doi.org/10.1177/14695405241243199 DOI: https://doi.org/10.1177/14695405241243199

Udomkun, P., Ilukor, J., Mockshell, J., Mujawamariya, G., Okafor, C., Bullock, R., Nabahungu, N. L., & Vanlauwe, B. (2018). What are the key factors influencing consumers’ preference and willingness to pay for meat products in Eastern? In Food Science & Nutrition (Vol. 6, Issue 8, pp. 2321–2336). Wiley. https://doi.org/10.1002/fsn3.813 DOI: https://doi.org/10.1002/fsn3.813

Nanda, P. K., Bhattacharya, D., Das, J. K., Bandyopadhyay, S., Ekhlas, D., Lorenzo, J. M., Dandapat, P., Alessandroni, L., Das, A. K., & Gagaoua, M. (2022). Emerging Role of Biosensors and Chemical Indicators to Monitor the Quality and Safety of Meat and Meat Products. In Chemosensors (Vol. 10, Issue 8, p. 322). MDPI AG. https://doi.org/10.3390/chemosensors10080322 DOI: https://doi.org/10.3390/chemosensors10080322

Savini, F., Giacometti, F., Cuomo, S. A., Tomasello, F., Terefe Mekonnen, Y., Troja, F., Indio, V., Tassinari, M., De Cesare, A., & Serraino, A. (2023). Reduction of the microbial load in meat maturation rooms with and without alkaline electrolyzed water fumigation. In Italian Journal of Food Safety. PAGEPress Publications. https://doi.org/10.4081/ijfs.2023.11109 DOI: https://doi.org/10.4081/ijfs.2023.11109

Okunomo, K.; Ogisi, D.; Bosah, B.O. The evaluation of microbiological profile of some spices used in Turkish meat industry. Journal of Food Agriculture & Environment 2009, 7, 111-115.

Rani, Z.T. Effect of post-slaughter handling on physico-chemical and microbiological quality of red meat along the distribution chain in the Eastern Cape Province, South Africa. 2015.

Al-Abbasi, F. A., Habib, A. S., Kumar, V., & Anwar, F. (2023). Evaluation of Microbial Contamination of Chicken and Fish in Food Industries and Associated Health Effects in Saudi Arabia. In Pakistan Journal of Zoology (Vol. 55, Issue 5). ResearchersLinks Ltd. https://doi.org/10.17582/journal.pjz/20210714140705 DOI: https://doi.org/10.17582/journal.pjz/20210714140705

Viator, C. L., Muth, M. K., Brophy, J. E., & Noyes, G. (2017). Costs of Food Safety Investments in the Meat and Poultry Slaughter Industries. In Journal of Food Science (Vol. 82, Issue 2, pp. 260–269). Wiley. https://doi.org/10.1111/1750-3841.13597 DOI: https://doi.org/10.1111/1750-3841.13597

Williams, M. S., Ebel, E. D., Saini, G., & Nyirabahizi, E. (2020). Changes in Salmonella Contamination in Meat and Poultry Since the Introduction of the Pathogen Reduction and Hazard Analysis and Critical Control Point Rule. In Journal of Food Protection (Vol. 83, Issue 10, pp. 1707–1717). Elsevier BV. https://doi.org/10.4315/jfp-20-126 DOI: https://doi.org/10.4315/JFP-20-126

Hulebak, K. L., & Schlosser, W. (2002). Hazard Analysis and Critical Control Point (HACCP) History and Conceptual Overview. In Risk Analysis (Vol. 22, Issue 3, pp. 547–552). Wiley. https://doi.org/10.1111/0272-4332.00038 DOI: https://doi.org/10.1111/0272-4332.00038

Yu, Z., Jung, D., Park, S., Hu, Y., Huang, K., Rasco, B. A., Wang, S., Ronholm, J., Lu, X., & Chen, J. (2020). Smart traceability for food safety. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 4, pp. 905–916). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1830262 DOI: https://doi.org/10.1080/10408398.2020.1830262

Jaison, F., & Ramaiah, N. S. (2022). A survey on traceability in food safety system using blockchain. In Journal of Discrete Mathematical Sciences and Cryptography (Vol. 25, Issue 3, pp. 793–799). Taru Publications. https://doi.org/10.1080/09720529.2021.2016215 DOI: https://doi.org/10.1080/09720529.2021.2016215

Ong, K. J., Johnston, J., Datar, I., Sewalt, V., Holmes, D., & Shatkin, J. A. (2021). Food safety considerations and research priorities for the cultured meat and seafood industry. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 6, pp. 5421–5448). Wiley. https://doi.org/10.1111/1541-4337.12853 DOI: https://doi.org/10.1111/1541-4337.12853

Tomasevic, I., Djekic, I., Novaković, S., Barba, F., & Lorenzo, J. M. (2019). The feasibility of pulsed light processing in the meat industry. In IOP Conference Series: Earth and Environmental Science (Vol. 333, Issue 1, p. 012034). IOP Publishing. https://doi.org/10.1088/1755-1315/333/1/012034 DOI: https://doi.org/10.1088/1755-1315/333/1/012034

Heinrich, V., Zunabovic, M., Varzakas, T., Bergmair, J., & Kneifel, W. (2015). Pulsed Light Treatment of Different Food Types with a Special Focus on Meat: A Critical Review. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 4, pp. 591–613). Informa UK Limited. https://doi.org/10.1080/10408398.2013.826174 DOI: https://doi.org/10.1080/10408398.2013.826174

Bolumar, T., Orlien, V., Sikes, A., Aganovic, K., Bak, K. H., Guyon, C., Stübler, A., de Lamballerie, M., Hertel, C., & Brüggemann, D. A. (2020). High‐pressure processing of meat: Molecular impacts and industrial applications. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 1, pp. 332–368). Wiley. https://doi.org/10.1111/1541-4337.12670

Rakotondramavo, A.; Guyon, C.; de-Lamballerie, M. Use of high pressure processing on meat products : commercial developments and research trends in food science. 2018.

Bolumar, T., Orlien, V., Sikes, A., Aganovic, K., Bak, K. H., Guyon, C., Stübler, A., de Lamballerie, M., Hertel, C., & Brüggemann, D. A. (2020). High‐pressure processing of meat: Molecular impacts and industrial applications. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 1, pp. 332–368). Wiley. https://doi.org/10.1111/1541-4337.12670 DOI: https://doi.org/10.1111/1541-4337.12670

Pou, K. R. J. (2021). Applications of High Pressure Technology in Food Processing. In International Journal of Food Studies (Vol. 10, Issue 1, pp. 248–281). ISEKI Food Association. https://doi.org/10.7455/ijfs/10.1.2021.a10 DOI: https://doi.org/10.7455/ijfs/10.1.2021.a10

Arshad, M.S. Recent Advances and Innovation in Meat with Reference to Processing Technologies. 2023.

Borick, P. M., & Fogarty, M. G. (1967). Effects of Continuous and Interrupted Radiation on Microorganisms. In Applied Microbiology (Vol. 15, Issue 4, pp. 785–789). American Society for Microbiology. https://doi.org/10.1128/am.15.4.785-789.1967 DOI: https://doi.org/10.1128/AEM.15.4.785-789.1967

Verma, C. Preservation of meat by heat and radiation-a review. International Journal in IT & Engineering 2015, 3, 186-195.

XAVIER, M. M. B. B. S., FRANCO, R. M., SOUZA, M. C. L., DUQUE, S. da S., & ESTEVES, W. T. C. (2018). Implications of the use of irradiation in the processing of animal origin foods: Review. In Journal of bioenergy and food science (Vol. 5, Issue 4, pp. 131–144). Instituto Federal do Amapa. https://doi.org/10.18067/jbfs.v5i4.257 DOI: https://doi.org/10.18067/jbfs.v5i4.257

Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J., & Pettersen, M. K. (2020). Nanocomposites for Food Packaging Applications: An Overview. In Nanomaterials (Vol. 11, Issue 1, p. 10). MDPI AG. https://doi.org/10.3390/nano11010010 DOI: https://doi.org/10.3390/nano11010010

Tyagi, P., Salem, K. S., Hubbe, M. A., & Pal, L. (2021). Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. In Trends in Food Science & Technology (Vol. 115, pp. 461–485). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.06.036 DOI: https://doi.org/10.1016/j.tifs.2021.06.036

Kumar, V., Guleria, P., & Mehta, S. K. (2017). Nanosensors for food quality and safety assessment. In Environmental Chemistry Letters (Vol. 15, Issue 2, pp. 165–177). Springer Science and Business Media LLC. https://doi.org/10.1007/s10311-017-0616-4 DOI: https://doi.org/10.1007/s10311-017-0616-4

Mohammadi, Z., & Jafari, S. M. (2020). Detection of food spoilage and adulteration by novel nanomaterial-based sensors. In Advances in Colloid and Interface Science (Vol. 286, p. 102297). Elsevier BV. https://doi.org/10.1016/j.cis.2020.102297 DOI: https://doi.org/10.1016/j.cis.2020.102297

Ulloa-Saavedra, A., García-Betanzos, C., Zambrano-Zaragoza, M., Quintanar-Guerrero, D., Mendoza-Elvira, S., & Velasco-Bejarano, B. (2022). Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products. In Foods (Vol. 11, Issue 14, p. 2150). MDPI AG. https://doi.org/10.3390/foods11142150 DOI: https://doi.org/10.3390/foods11142150

Aswathanarayan, J. B., & Vittal, R. R. (2019). Nanoemulsions and Their Potential Applications in Food Industry. In Frontiers in Sustainable Food Systems (Vol. 3). Frontiers Media SA. https://doi.org/10.3389/fsufs.2019.00095 DOI: https://doi.org/10.3389/fsufs.2019.00095

Lamri, M., Bhattacharya, T., Boukid, F., Chentir, I., Dib, A. L., Das, D., Djenane, D., & Gagaoua, M. (2021). Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. In Foods (Vol. 10, Issue 11, p. 2633). MDPI AG. https://doi.org/10.3390/foods10112633 DOI: https://doi.org/10.3390/foods10112633

Onyeaka, H., Passaretti, P., Miri, T., & Al-Sharify, Z. T. (2022). The safety of nanomaterials in food production and packaging. In Current Research in Food Science (Vol. 5, pp. 763–774). Elsevier BV. https://doi.org/10.1016/j.crfs.2022.04.005 DOI: https://doi.org/10.1016/j.crfs.2022.04.005

Thakur, D., Ravikumar, R., Kumar, P., Gupta, A., Sharma, A., Katoch, S., & Bodh, V. (2012). Meat inspection and animal welfare practices: Evidences from north-western Himalayan region, India. In Veterinary World (Vol. 5, Issue 12, p. 718). ScopeMed. https://doi.org/10.5455/vetworld.2012.718-722 DOI: https://doi.org/10.5455/vetworld.2012.718-722

Bayarsaikhan, M., Purevdorj, N.-O., Kim, B. H., Jung, J. H., & Cho, G. J. (2023). Evaluation of the Microbiological Status of Cattle Carcasses in Mongolia: Considering the Hygienic Practices of Slaughter Establishments. In Veterinary Sciences (Vol. 10, Issue 9, p. 563). MDPI AG. https://doi.org/10.3390/vetsci10090563 DOI: https://doi.org/10.3390/vetsci10090563

Ramachandraiah, K., Han, S. G., & Chin, K. B. (2014). Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review. In Asian-Australasian Journal of Animal Sciences (Vol. 28, Issue 2, pp. 290–302). Asian Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.14.0607 DOI: https://doi.org/10.5713/ajas.14.0607

Xie, L., Qin, J., Yao, T., Tang, X., Cui, D., Chen, L., Rao, L., Xiao, S., Zhang, Z., & Huang, L. (2023). Genetic dissection of 26 meat cut, meat quality and carcass traits in four pig populations. In Genetics Selection Evolution (Vol. 55, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12711-023-00817-y DOI: https://doi.org/10.1186/s12711-023-00817-y

Wray-Cahen, D., Bodnar, A., Rexroad, C., III, Siewerdt, F., & Kovich, D. (2022). Advancing genome editing to improve the sustainability and resiliency of animal agriculture. In CABI Agriculture and Bioscience (Vol. 3, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s43170-022-00091-w DOI: https://doi.org/10.1186/s43170-022-00091-w

Dybus, A., Proskura, W. S., Pawlina, E., & Nowak, B. (2018). Associations between polymorphisms in the myostatin, α<sup>A</sup>-globin and lactate dehydrogenase B genes and racing performance in homing pigeons. In Veterinární medicína (Vol. 63, Issue 8, pp. 390–394). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/149/2017-vetmed DOI: https://doi.org/10.17221/149/2017-VETMED

Vanderhout, R. J., Leishman, E. M., Abdalla, E. A., Barbut, S., Wood, B. J., & Baes, C. F. (2022). Genetic Parameters of White Striping and Meat Quality Traits Indicative of Pale, Soft, Exudative Meat in Turkeys (Meleagris gallopavo). In Frontiers in Genetics (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fgene.2022.842584

Silva, R. P., Espigolan, R., Berton, M. P., Lôbo, R. B., Magnabosco, C. U., Pereira, A. S. C., & Baldi, F. (2021). Genomic prediction ability for carcass composition indicator traits in Nellore cattle. In Livestock Science (Vol. 245, p. 104421). Elsevier BV. https://doi.org/10.1016/j.livsci.2021.104421 DOI: https://doi.org/10.1016/j.livsci.2021.104421

Sandøe, P., Hansen, H. O., Rhode, H. L. H., Houe, H., Palmer, C., Forkman, B., & Christensen, T. (2020). Benchmarking Farm Animal Welfare—A Novel Tool for Cross-Country Comparison Applied to Pig Production and Pork Consumption. In Animals (Vol. 10, Issue 6, p. 955). MDPI AG. https://doi.org/10.3390/ani10060955 DOI: https://doi.org/10.3390/ani10060955

Cornish, A., Raubenheimer, D., & McGreevy, P. (2016). What We Know about the Public’s Level of Concern for Farm Animal Welfare in Food Production in Developed Countries. In Animals (Vol. 6, Issue 11, p. 74). MDPI AG. https://doi.org/10.3390/ani6110074 DOI: https://doi.org/10.3390/ani6110074

Edwards-Callaway, L., Davis, M., Dean, L., & McBride, B. (2024). Stakeholder Perceptions of Animal Welfare as a Component of Sustainable Beef Programs in the United States—A Pilot Study. In Animals (Vol. 14, Issue 9, p. 1348). MDPI AG. https://doi.org/10.3390/ani14091348 DOI: https://doi.org/10.3390/ani14091348

Schnettler M, B., Vidal M, R., Silva F, R., Vallejos C, L., & Sepúlveda B, N. (2008). Consumer Perception of Animal Welfare and Livestock Production in the Araucania Region , Chile. In Chilean journal of agricultural research (Vol. 68, Issue 1). SciELO Agencia Nacional de Investigacion y Desarrollo (ANID). https://doi.org/10.4067/s0718-58392008000100008 DOI: https://doi.org/10.4067/S0718-58392008000100008

Ahmed, H., Emanuelson, U., Alvåsen, K., Berg, C., Hultgren, J., Rocklinsberg, H., & Hansson, H. (2023). Animal welfare efforts and farm economic outcomes: Evidence from Swedish beef production. In Agricultural and Resource Economics Review (Vol. 52, Issue 3, pp. 498–519). Cambridge University Press (CUP). https://doi.org/10.1017/age.2023.8 DOI: https://doi.org/10.1017/age.2023.8

Evans, H. C., Briggs, E. F., Burnett, R. H., Contreras-Correa, Z. E., Duvic, M. A., Dysart, L. M., Gilmore, A. A., Messman, R. D., Reid, D., Rasit Ugur, M., Kaya, A., & Memili, E. (2022). Harnessing the value of reproductive hormones in cattle production with considerations to animal welfare and human health. In Journal of Animal Science (Vol. 100, Issue 7). Oxford University Press (OUP). https://doi.org/10.1093/jas/skac177 DOI: https://doi.org/10.1093/jas/skac177

Schaefer, G. O., & Savulescu, J. (2014). The Ethics of Producing In Vitro Meat. In Journal of Applied Philosophy (Vol. 31, Issue 2, pp. 188–202). Wiley. https://doi.org/10.1111/japp.12056 DOI: https://doi.org/10.1111/japp.12056

Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. In Trends in Food Science & Technology (Vol. 78, pp. 155–166). Elsevier BV. https://doi.org/10.1016/j.tifs.2018.04.010 DOI: https://doi.org/10.1016/j.tifs.2018.04.010

Paranhos da Costa, M. J. R., Huertas, S. M., Gallo, C., & Dalla Costa, O. A. (2012). Strategies to promote farm animal welfare in Latin America and their effects on carcass and meat quality traits. In Meat Science (Vol. 92, Issue 3, pp. 221–226). Elsevier BV. https://doi.org/10.1016/j.meatsci.2012.03.005 DOI: https://doi.org/10.1016/j.meatsci.2012.03.005

Khan, R., Li, A., & Raza, S. H. A. (2023). Editorial: Genetic Regulation of Meat Quality Traits in Livestock Species. In Frontiers in Genetics (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fgene.2022.1092562 DOI: https://doi.org/10.3389/fgene.2022.1092562

Vanderhout, R. J., Leishman, E. M., Abdalla, E. A., Barbut, S., Wood, B. J., & Baes, C. F. (2022). Genetic Parameters of White Striping and Meat Quality Traits Indicative of Pale, Soft, Exudative Meat in Turkeys (Meleagris gallopavo). In Frontiers in Genetics (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fgene.2022.842584 DOI: https://doi.org/10.3389/fgene.2022.842584

Slaughterhouses and Food Animals Monitoring. Available at: https://www.cfs.gov.hk/english/import/import_smi.html

Meat Inspection. Available online: https://meat.tamu.edu/ansc-307-honors/meat-inspection/ (accessed on

Product Labeling Available online: https://www.nichemeatprocessing.org/product-labeling/

Reyna, M., Delgado, G., Akundi, A., Luna, S., & Chumacero, E. (2022). Product Digital Quality Inspection using Machine Vision Systems – A Categorical Review. In 2022 17th Annual System of Systems Engineering Conference (SOSE). 2022 17th Annual System of Systems Engineering Conference (SOSE). IEEE. https://doi.org/10.1109/sose55472.2022.9812687 DOI: https://doi.org/10.1109/SOSE55472.2022.9812687

Ahmed, M. B., Majeed, F., Sanin, C., & Szczerbicki, E. (2021). Experience-Based Product Inspection Planning for Industry 4.0. In Cybernetics and Systems (Vol. 52, Issue 5, pp. 296–312). Informa UK Limited. https://doi.org/10.1080/01969722.2020.1871222 DOI: https://doi.org/10.1080/01969722.2020.1871222

Black, R. E., Hurley, F. J., & Havery, D. C. (2001). Occurrence of 1,4-Dioxane in Cosmetic Raw Materials and Finished Cosmetic Products. In Journal of AOAC INTERNATIONAL (Vol. 84, Issue 3, pp. 666–670). Oxford University Press (OUP). https://doi.org/10.1093/jaoac/84.3.666 DOI: https://doi.org/10.1093/jaoac/84.3.666

Govender, R.; Naidoo, D.; Buys, E.M. Managing Meat Safety at South African Abattoirs. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 2013, 7, 279-284.

Sandrou, D. K., & Arvanitoyannis, I. S. (1999). Implementation of hazard analysis critical control point in the meat and poultry industry. In Food Reviews International (Vol. 15, Issue 3, pp. 265–308). Informa UK Limited. https://doi.org/10.1080/87559129909541192 DOI: https://doi.org/10.1080/87559129909541192

Jeffer, S. B., Kassem, I. I., Kharroubi, S. A., & Abebe, G. K. (2021). Analysis of Food Safety Management Systems in the Beef Meat Processing and Distribution Chain in Uganda. In Foods (Vol. 10, Issue 10, p. 2244). MDPI AG. https://doi.org/10.3390/foods10102244 DOI: https://doi.org/10.3390/foods10102244

Hooker, N. H., Nayga, R. M., Jr., & Siebert, J. W. (2002). The Impact of HACCP on Costs and Product Exit. In Journal of Agricultural and Applied Economics (Vol. 34, Issue 1, pp. 165–174). Cambridge University Press (CUP). https://doi.org/10.1017/s1074070800002212 DOI: https://doi.org/10.1017/S1074070800002212

Barki, K. (2024). Kajian Literatur: Dampak Penerapan HACCP dan Sistem Mutu dalam Peningkatan Daya Saing pada Industri Pengolahan Ayam. In Agricultural Socio-Economic Empowerment and Agribusiness Journal (Vol. 2, Issue 2, p. 57). Universitas Sebelas Maret. https://doi.org/10.20961/agrisema.v2i2.72926 DOI: https://doi.org/10.20961/agrisema.v2i2.72926

Schmidt, R. H., & Newslow, D. L. (2007). Hazard Analysis Critical Control Points (HACCP) – Principle 3: Establish Critical Limits and Principle 4: Monitoring Critical Control Points (CCPs). In EDIS (Vol. 2007, Issue 18). University of Florida George A Smathers Libraries. https://doi.org/10.32473/edis-fs141-2007 DOI: https://doi.org/10.32473/edis-fs141-2007

Schmidt, R. H., & Newslow, D. (2007). Hazard Analysis Critical Control Points (HACCP) Principle 5: Establish Corrective Actions. In EDIS (Vol. 2007, Issue 19). University of Florida George A Smathers Libraries. https://doi.org/10.32473/edis-fs142-2007 DOI: https://doi.org/10.32473/edis-fs142-2007

Bosona, T., & Gebresenbet, G. (2023). The Role of Blockchain Technology in Promoting Traceability Systems in Agri-Food Production and Supply Chains. In Sensors (Vol. 23, Issue 11, p. 5342). MDPI AG. https://doi.org/10.3390/s23115342 DOI: https://doi.org/10.3390/s23115342

BERCKMANS, D. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. In Revue Scientifique et Technique de l’OIE (Vol. 33, Issue 1, pp. 189–196). O.I.E (World Organisation for Animal Health). https://doi.org/10.20506/rst.33.1.2273 DOI: https://doi.org/10.20506/rst.33.1.2273

Berckmans, D. (2015). 1.2. Smart farming for Europe: value creation through precision livestock farming. In Precision livestock farming applications (pp. 25–36). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-815-5_2 DOI: https://doi.org/10.3920/978-90-8686-815-5_2

Garmyn, A., Hardcastle, N., Polkinghorne, R., Lucherk, L., & Miller, M. (2020). Extending Aging of Beef Longissimus Lumborum From 21 to 84 Days Postmortem Influences Consumer Eating Quality. In Foods (Vol. 9, Issue 2, p. 208). MDPI AG. https://doi.org/10.3390/foods9020208 DOI: https://doi.org/10.3390/foods9020208

Fan, Y., Han, Z., ARBAB, A. A. I., Yang, Y., & Yang, Z. (2020). Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. In Animals (Vol. 10, Issue 10, p. 1897). MDPI AG. https://doi.org/10.3390/ani10101897 DOI: https://doi.org/10.3390/ani10101897

Abril, B., Bou, R., García-Pérez, J. V., & Benedito, J. (2023). Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. In Foods (Vol. 12, Issue 10, p. 1940). MDPI AG. https://doi.org/10.3390/foods12101940 DOI: https://doi.org/10.3390/foods12101940

Kang, D., Zhang, W., Lorenzo, J. M., & Chen, X. (2020). Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. In Critical Reviews in Food Science and Nutrition (Vol. 61, Issue 11, pp. 1914–1933). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1767538 DOI: https://doi.org/10.1080/10408398.2020.1767538

Teixeira, D. L., Salazar, L. C., Larraín, R., & Boyle, L. A. (2022). The capacity of inspection on farm and at the abattoir to predict post‐mortem outcomes in slaughter pigs: A study at animal level. In Animal Science Journal (Vol. 94, Issue 1). Wiley. https://doi.org/10.1111/asj.13798 DOI: https://doi.org/10.1111/asj.13798

Sprong, J. P., Lin, X., Maestre, J. M., & Negenborn, R. R. (2019). Quality-Aware Control for Optimizing Meat Supply Chains. In 2019 18th European Control Conference (ECC). 2019 18th European Control Conference (ECC). IEEE. https://doi.org/10.23919/ecc.2019.8795777 DOI: https://doi.org/10.23919/ECC.2019.8795777

Wang, X., Matetić, M., Zhou, H., Zhang, X., & Jemrić, T. (2017). Postharvest Quality Monitoring and Variance Analysis of Peach and Nectarine Cold Chain with Multi-Sensors Technology. In Applied Sciences (Vol. 7, Issue 2, p. 133). MDPI AG. https://doi.org/10.3390/app7020133 DOI: https://doi.org/10.3390/app7020133

Ren-yong, T. Application of Hurdle Technology for Quality Control and Cold Chain Management in Meat Processing Industry. Meat Research 2013.

Katsaros, G., & Taoukis, P. (2021). Microbial Control by High Pressure Processing for Shelf-Life Extension of Packed Meat Products in the Cold Chain: Modeling and Case Studies. In Applied Sciences (Vol. 11, Issue 3, p. 1317). MDPI AG. https://doi.org/10.3390/app11031317 DOI: https://doi.org/10.3390/app11031317

Pramanic, A.; asmitapramanic. A review on molecular methods in the detection of foodborne pathogens. 2021.

Quain, D., & Jevons, A. (2023). The spoilage of lager by draught beer microbiota. In Journal of the Institute of Brewing (Vol. 129, Issue 4). The Institute of Brewing & Distilling. https://doi.org/10.58430/jib.v129i4.32 DOI: https://doi.org/10.58430/jib.v129i4.32

Bolzon, V., Bulfoni, M., Pesando, M., Nencioni, A., & Nencioni, E. (2024). Verification of a Rapid Analytical Method for the Qualitative Detection of Listeria spp. and Listeria monocytogenes by a Real-Time PCR Assay according to EN UNI ISO 16140-3:2021. In Pathogens (Vol. 13, Issue 2, p. 141). MDPI AG. https://doi.org/10.3390/pathogens13020141 DOI: https://doi.org/10.3390/pathogens13020141

Pedroso, D. M. M., Iaria, S. T., Gamba, R. C., Heidtmann, S., & Rall, V. L. M. (1999). Critical control points for meat balls and kibbe preparations in a hospital kitchen. In Revista de Microbiologia (Vol. 30, Issue 4, pp. 347–355). FapUNIFESP (SciELO). https://doi.org/10.1590/s0001-37141999000400010 DOI: https://doi.org/10.1590/S0001-37141999000400010

Andrée, S.; Jira, W.; Schwägele, F.; Schwind, K.H.; Wagner, H. Chemical safety in meat industry. 2011.

Filazi, A., Yurdakok-Dikmen, B., Kuzukiran, O., & Sireli, U. T. (2017). Chemical Contaminants in Poultry Meat and Products. In Poultry Science. InTech. https://doi.org/10.5772/64893 DOI: https://doi.org/10.5772/64893

LI, J., JU, X., WANG, Y., TIAN, Q., LIANG, X., LI, H., & LIU, Y. (2023). High-throughput screening of multi-pesticide residues in animal-derived foods by QuEChERS-online gel permeation chromatography-gas chromatography-tandem mass spectrometry. In Chinese Journal of Chromatography (Vol. 41, Issue 7, pp. 610–621). China Science Publishing & Media Ltd. https://doi.org/10.3724/sp.j.1123.2022.10010 DOI: https://doi.org/10.3724/SP.J.1123.2022.10010

Bietlot, H. P., & Kolakowski, B. (2012). Risk assessment and risk management at the Canadian Food Inspection Agency (CFIA): A perspective on the monitoring of foods for chemical residues. In Drug Testing and Analysis (Vol. 4, Issue S1, pp. 50–58). Wiley. https://doi.org/10.1002/dta.1352 DOI: https://doi.org/10.1002/dta.1352

Batchu, P., Hazard, T., Lee, J. H., Terrill, T. H., Kouakou, B., & Kannan, G. (2021). High-Condensed Tannin Diet and Transportation Stress in Goats: Effects on Physiological Responses, Gut Microbial Counts and Meat Quality. In Animals (Vol. 11, Issue 10, p. 2857). MDPI AG. https://doi.org/10.3390/ani11102857 DOI: https://doi.org/10.3390/ani11102857

Tokan, Y. K., Astutik, Y. W., Samba, A., Djubida, F. A., Lakahena, D. I., Mali, S. L., Rahmawati, E. M., & Junias, M. S. (2023). Relationships between Knowledge, Sanitation and Hygiene of Food Handlers, and Food Safety in the Restaurants in Pasir Panjang, Kupang, East Nusa Tenggara, Indonesia. In Journal of Health Promotion and Behavior (Vol. 8, Issue 3, pp. 234–242). Masters Program in Public Health, Sebelas Maret University. https://doi.org/10.26911/thejhpb.2023.08.03.08 DOI: https://doi.org/10.26911/thejhpb.2023.08.03.08

Aldossari, H. Validation of Post-Harvest Wash Process to Prevent Cross-Contamination in Leafy Green Processing. 2016.

Abichandani, S., & Nadiger, R. (2013). Cross-contamination in dentistry: A comprehensive overview. In Chronicles of Young Scientists (Vol. 4, Issue 1, p. 51). Medknow. https://doi.org/10.4103/2229-5186.108807 DOI: https://doi.org/10.4103/2229-5186.108807

Kanade, P.; Subramani, A. Hygienic design aspects of pasteurizer to prevent cross contamination of pasteurized milk. Journal of Hygienic Engineering and Design 2013, 2, 12-18.

Griffing, D. A., Kriese-Anderson, L. A., Mullenix, M. K., Wang, L., & Bratcher, C. L. (2018). A Study of Consumer Handling Behaviors during Transport from Retail to Residence Utilizing an Electronic Questionnaire. In Meat and Muscle Biology (Vol. 2, Issue 1). Iowa State University. https://doi.org/10.22175/mmb2017.12.0058 DOI: https://doi.org/10.22175/mmb2017.12.0058

Mahajan, K.; Kumar, S.; Kumar, S. Implementation of traceability in food industry with special allusion to meat industry. 2019.

Vandegraaff, R.C. Managing a regulatory culture change in the meat industry QA and the ARMCANZ national standards. 1997.

Unnevehr, L. J., & Jensen, H. H. (1996). HACCP as a Regulatory Innovation to Improve Food Safety in the Meat Industry. In American Journal of Agricultural Economics (Vol. 78, Issue 3, pp. 764–769). Wiley. https://doi.org/10.2307/1243301 DOI: https://doi.org/10.2307/1243301

Sośnicka, M. Natural preservatives in meat products. 2019.

Xiao-jua, P. Application of natural preservatives to meat and meat products. Meat Industry 2010.

Fei, W. Application of Several Natural Preservatives in Low-temperature Meat Products. Meat Research 2011.

Santiesteban-López, N. A., Gómez-Salazar, J. A., Santos, E. M., Campagnol, P. C. B., Teixeira, A., Lorenzo, J. M., Sosa-Morales, M. E., & Domínguez, R. (2022). Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. In Foods (Vol. 11, Issue 17, p. 2613). MDPI AG. https://doi.org/10.3390/foods11172613 DOI: https://doi.org/10.3390/foods11172613

Kargozari, M.; Hamedi, H. Incorporation of essential oils (EOs) and nanoparticles (NPs) into active packaging systems in meat and meat products: A review. 2019.

Ji, J., Shankar, S., Royon, F., Salmieri, S., & Lacroix, M. (2021). Essential oils as natural antimicrobials applied in meat and meat products—a review. In Critical Reviews in Food Science and Nutrition (Vol. 63, Issue 8, pp. 993–1009). Informa UK Limited. https://doi.org/10.1080/10408398.2021.1957766 DOI: https://doi.org/10.1080/10408398.2021.1957766

Nieto, G., & Ros, G. (2017). Dietary Administration of Animal Diets with Aromatic and Medicinal Plants: Influence on Meat Quality. In Active Ingredients from Aromatic and Medicinal Plants. InTech. https://doi.org/10.5772/67038 DOI: https://doi.org/10.5772/67038

Moura-Alves, M., Esteves, A., Ciríaco, M., Silva, J. A., & Saraiva, C. (2023). Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat. In Foods (Vol. 12, Issue 12, p. 2308). MDPI AG. https://doi.org/10.3390/foods12122308 DOI: https://doi.org/10.3390/foods12122308

Lorenzo, J. M., Munekata, P. E. S., Pateiro, M., Domínguez, R., Abdulrazzaq Alaghbari, M., & Tomasevic, I. (2021). Preservation of meat products with natural antioxidants from rosemary. In IOP Conference Series: Earth and Environmental Science (Vol. 854, Issue 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1755-1315/854/1/012053 DOI: https://doi.org/10.1088/1755-1315/854/1/012053

Ben Akacha, B., Michalak, M., Najar, B., Venturi, F., Taglieri, I., Kačániová, M., Ben Saad, R., Mnif, W., Garzoli, S., & Ben Hsouna, A. (2023). Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. In Foods (Vol. 12, Issue 8, p. 1647). MDPI AG. https://doi.org/10.3390/foods12081647 DOI: https://doi.org/10.3390/foods12081647

Çelebi Sezer, Y., & Bozkurt, H. (2021). Use of antimicrobial packaging systems in the production and storage of meat and meat products. In Food and Health (Vol. 7, Issue 2, pp. 150–163). Scientific Web Journals (SWJ). https://doi.org/10.3153/fh21016 DOI: https://doi.org/10.3153/FH21016

Cooksey, K. (2010). Oxygen Scavenging Packaging Systems. In Encyclopedia of Polymer Science and Technology. Wiley. https://doi.org/10.1002/0471440264.pst570 DOI: https://doi.org/10.1002/0471440264.pst570

Prasad, P., & Kochhar, A. (2014). Active Packaging in Food Industry: A Review. In IOSR Journal of Environmental Science, Toxicology and Food Technology (Vol. 8, Issue 5, pp. 01–07). IOSR Journals. https://doi.org/10.9790/2402-08530107 DOI: https://doi.org/10.9790/2402-08530107

Siddiqui, S. A., Sundarsingh, A., Bahmid, N. A., Nirmal, N., Denayer, J. F. M., & Karimi, K. (2023). A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. In Comprehensive Reviews in Food Science and Food Safety (Vol. 22, Issue 5, pp. 4147–4185). Wiley. https://doi.org/10.1111/1541-4337.13202 DOI: https://doi.org/10.1111/1541-4337.13202

Bose, I., Roy, S., Pandey, V. K., & Singh, R. (2023). A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. In Antibiotics (Vol. 12, Issue 6, p. 968). MDPI AG. https://doi.org/10.3390/antibiotics12060968

Hara, Y., Castell‐Perez, M. E., & Moreira, R. G. (2023). Antimicrobial properties of poly (vinyl alcohol) films with zeolitic imidazolate framework (ZIF‐8) nanoparticles for food packaging. In Journal of Food Science (Vol. 88, Issue 6, pp. 2512–2522). Wiley. https://doi.org/10.1111/1750-3841.16572 DOI: https://doi.org/10.1111/1750-3841.16572

Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N. Ž., Gadjanski, I., & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 3, pp. 2428–2454). Wiley. https://doi.org/10.1111/1541-4337.12727 DOI: https://doi.org/10.1111/1541-4337.12727

Bose, I., Roy, S., Pandey, V. K., & Singh, R. (2023). A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. In Antibiotics (Vol. 12, Issue 6, p. 968). MDPI AG. https://doi.org/10.3390/antibiotics12060968 DOI: https://doi.org/10.3390/antibiotics12060968

Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. In Food and Bioprocess Technology (Vol. 5, Issue 5, pp. 1447–1464). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-012-0797-6 DOI: https://doi.org/10.1007/s11947-012-0797-6

Ye, J., Hou, F., Chen, G., Zhong, T., Xue, J., Yu, F., Lai, Y., Yang, Y., Liu, D., Tian, Y., & Huang, J. (2023). Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels. In Frontiers in Microbiology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fmicb.2023.1023036 DOI: https://doi.org/10.3389/fmicb.2023.1023036

Asghar, M. A., & Asghar, M. A. (2020). Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. In International Journal of Biological Macromolecules (Vol. 160, pp. 1168–1176). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2020.05.198 DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.198

Chen, K. L., & Bothun, G. D. (2013). Nanoparticles Meet Cell Membranes: Probing Nonspecific Interactions using Model Membranes. In Environmental Science & Technology (Vol. 48, Issue 2, pp. 873–880). American Chemical Society (ACS). https://doi.org/10.1021/es403864v DOI: https://doi.org/10.1021/es403864v

Hashem, A. H., El-Naggar, M. E., Abdelaziz, A. M., Abdelbary, S., Hassan, Y. R., & Hasanin, M. S. (2023). Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. In International Journal of Biological Macromolecules (Vol. 249, p. 126011). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2023.126011 DOI: https://doi.org/10.1016/j.ijbiomac.2023.126011

Baysal, G., Demirci, C., & Özpinar, H. (2023). Proporties and Synthesis of Biosilver Nanofilms for Antimicrobial Food Packaging. In Polymers (Vol. 15, Issue 3, p. 689). MDPI AG. https://doi.org/10.3390/polym15030689 DOI: https://doi.org/10.3390/polym15030689

Kaur, G., Bhari, R., & Kumar, K. (2023). Nanobiosensors and their role in detection of adulterants and contaminants in food products. In Critical Reviews in Biotechnology (Vol. 44, Issue 4, pp. 547–561). Informa UK Limited. https://doi.org/10.1080/07388551.2023.2175196 DOI: https://doi.org/10.1080/07388551.2023.2175196

Mathivanan, S. (2021). Perspectives of Nano-Materials and Nanobiosensors in Food Safety and Agriculture. In Novel Nanomaterials. IntechOpen. https://doi.org/10.5772/intechopen.95345 DOI: https://doi.org/10.5772/intechopen.95345

Arvana, M., Rocha, A. D., & Barata, J. (2023). Agri-Food Value Chain Traceability Using Blockchain Technology: Portuguese Hams’ Production Scenario. In Foods (Vol. 12, Issue 23, p. 4246). MDPI AG. https://doi.org/10.3390/foods12234246 DOI: https://doi.org/10.3390/foods12234246

S, P.; Mundada, M.R. Blockchain in Agriculture and Food Supply Management. GEDRAG & ORGANISATIE REVIEW 2020.

Wisessing, K., & Vichaidis, N. (2022). IoT Based Cold Chain Logistics with Blockchain for Food Monitoring Application. In 2022 7th International Conference on Business and Industrial Research (ICBIR). 2022 7th International Conference on Business and Industrial Research (ICBIR). IEEE. https://doi.org/10.1109/icbir54589.2022.9786493 DOI: https://doi.org/10.1109/ICBIR54589.2022.9786493

Iftekhar, A., & Cui, X. (2021). Blockchain-Based Traceability System That Ensures Food Safety Measures to Protect Consumer Safety and COVID-19 Free Supply Chains. In Foods (Vol. 10, Issue 6, p. 1289). MDPI AG. https://doi.org/10.3390/foods10061289 DOI: https://doi.org/10.3390/foods10061289

Čapla, J., Zajác, P., Ševcová, K., Čurlej, J., & Fikselová, M. (2022). Milk and diary products – summary of European legislation, hygiene manuals, ISO standards and Codex Alimentarius standards. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 431–462). HACCP Consulting. https://doi.org/10.5219/1744 DOI: https://doi.org/10.5219/1744

Ševcová, K., Zajác, P., Čapla, J., & Čurlej, J. (2021). Development of the food act of the Slovak Republic from 1995 to 2021. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 982–994). HACCP Consulting. https://doi.org/10.5219/1689 DOI: https://doi.org/10.5219/1689

Downloads

Published

2024-06-19

How to Cite

Rebezov, M., Khayrullin, M., Assenova, B., Farida, S., Baydan, D., Garipova, L., Savkina, R., & Rodionova, S. (2024). Improving meat quality and safety: innovative strategies. Potravinarstvo Slovak Journal of Food Sciences, 18, 523–546. https://doi.org/10.5219/1972

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.