Crosslinking methods for improving the properties of soy-protein based films for meat packaging: a review
DOI:
https://doi.org/10.5219/1892Keywords:
Soy protein-based films, meat packaging, crosslinking, meatAbstract
Crosslinking methods have been used to improve the properties of soy protein-based films for various applications, such as meat packaging. Some of the crosslinking methods that have been reported in the literature include boiling soy milk, baking soy protein isolates, adding canola and sorghum proteins, incorporating Plantago major seed mucilage and Anethum graveolens essential oil, adding pine needle extract (PNE), incorporating montmorillonite and citric acid, using xylose as a crosslinker, and crosslinking with glutaraldehyde. The incorporation of additives such as canola and sorghum proteins, Plantago major seed mucilage and Anethum graveolens essential oil, and pine needle extract (PNE) has also been reported to improve the properties of soy protein-based films. In conclusion, soy protein-based films have excellent film-forming properties and many functional characteristics, making them a promising material for food packaging applications. However, their poor moisture barrier properties must be improved to make them more suitable for food packaging applications. Crosslinking methods have been used to improve the properties of soy protein-based films for various applications, such as meat packaging. The incorporation of additives such as canola and sorghum proteins, Plantago major seed mucilage and Anethum graveolens essential oil, and pine needle extract (PNE) has also been reported to improve the properties of soy protein-based films.
Downloads
Metrics
References
Puscaselu, R. G., Anchidin-Norocel, L., Petraru, A., & Ursachi, F. (2021). Strategies and Challenges for Successful Implementation of Green Economy Concept: Edible Materials for Meat Products Packaging. In Foods (Vol. 10, Issue 12, p. 3035). MDPI AG. https://doi.org/10.3390/foods10123035 DOI: https://doi.org/10.3390/foods10123035
Kondratova, T. A., Semenok, A. A., Kirsch, I. A., Bannikova, O. A., Ostrovskaya, V. D., & Myalenko, D. M. (2020). Barrier packaging materials for meat products. In Meat technology magazine (pp. 19–21). Otraslevije Vedomosty Publishing House Ltd. https://doi.org/10.33465/2308-2941-2020-01-19-21 DOI: https://doi.org/10.33465/2308-2941-2020-01-19-21
Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. In Foods (Vol. 12, Issue 5, p. 1057). MDPI AG. https://doi.org/10.3390/foods12051057 DOI: https://doi.org/10.3390/foods12051057
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. In Materials (Vol. 13, Issue 21, p. 4994). MDPI AG. https://doi.org/10.3390/ma13214994 DOI: https://doi.org/10.3390/ma13214994
Marsh, K., & Bugusu, B. (2007). Food Packaging?Roles, Materials, and Environmental Issues. In Journal of Food Science (Vol. 72, Issue 3, pp. R39–R55). Wiley. https://doi.org/10.1111/j.1750-3841.2007.00301.x DOI: https://doi.org/10.1111/j.1750-3841.2007.00301.x
Wu, Y., Cai, L., Wang, C., Mei, C., & Shi, S. (2018). Sodium Hydroxide-Free Soy Protein Isolate-Based Films Crosslinked by Pentaerythritol Glycidyl Ether. In Polymers (Vol. 10, Issue 12, p. 1300). MDPI AG. https://doi.org/10.3390/polym10121300 DOI: https://doi.org/10.3390/polym10121300
Xu, Y., Han, Y., Chen, M., Li, J., Li, J., Luo, J., & Gao, Q. (2022). A soy protein-based film by mixed covalent cross-linking and flexibilizing networks. In Industrial Crops and Products (Vol. 183, p. 114952). Elsevier BV. https://doi.org/10.1016/j.indcrop.2022.114952 DOI: https://doi.org/10.1016/j.indcrop.2022.114952
Xia, C., Wang, L., Dong, Y., Zhang, S., Shi, S. Q., Cai, L., & Li, J. (2015). Soy protein isolate-based films cross-linked by epoxidized soybean oil. In RSC Advances (Vol. 5, Issue 101, pp. 82765–82771). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5ra15590h DOI: https://doi.org/10.1039/C5RA15590H
Jin, M., Ikeda, S., & Zhong, Q. (2013). Strengthening soy protein hydrogels filled with protein-coated montmorillonite nanoclay by glutaraldehyde crosslinking. In LWT - Food Science and Technology (Vol. 51, Issue 1, pp. 23–29). Elsevier BV. https://doi.org/10.1016/j.lwt.2012.10.012 DOI: https://doi.org/10.1016/j.lwt.2012.10.012
Xu, F., Dong, Y., Zhang, W., Zhang, S., Li, L., & Li, J. (2015). Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM. In Industrial Crops and Products (Vol. 67, pp. 373–380). Elsevier BV. https://doi.org/10.1016/j.indcrop.2015.01.059 DOI: https://doi.org/10.1016/j.indcrop.2015.01.059
Wittaya, T. (2012). Protein-Based Edible Films: Characteristics and Improvement of Properties. In Structure and Function of Food Engineering. InTech. https://doi.org/10.5772/48167 DOI: https://doi.org/10.5772/48167
Giro, T., Beloglazova, K., Rysmukhambetova, G., Simakova, I., Karpunina, L., Rogojin, A., Kulikovsky, A., & Andreeva, S. (2020). Xanthan-based biodegradable packaging for fish and meat products. In Foods and Raw Materials (Vol. 8, Issue 1, pp. 67–75). Kemerovo State University. https://doi.org/10.21603/2308-4057-2020-1-67-75 DOI: https://doi.org/10.21603/2308-4057-2020-1-67-75
Ashfaq, J., Channa, I. A., Shaikh, A. A., Chandio, A. D., Shah, A. A., Bughio, B., Birmahani, A., Alshehri, S., & Ghoneim, M. M. (2022). Gelatin- and Papaya-Based Biodegradable and Edible Packaging Films to Counter Plastic Waste Generation. In Materials (Vol. 15, Issue 3, p. 1046). MDPI AG. https://doi.org/10.3390/ma15031046 DOI: https://doi.org/10.3390/ma15031046
Zhang, Z., Zhou, X., Fang, C., & Wang, D. (2022). Characterization of the Antimicrobial Edible Film Based on Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde Blend Crosslinked With Xylose. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fnut.2022.796356 DOI: https://doi.org/10.3389/fnut.2022.796356
Wang, L., Xu, J., Zhang, M., Zheng, H., & Li, L. (2022). Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. In Food Chemistry (Vol. 380, p. 132022). Elsevier BV. https://doi.org/10.1016/j.foodchem.2021.132022 DOI: https://doi.org/10.1016/j.foodchem.2021.132022
Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C., Dulf, F. V., Socaci, S. A., Fărcaș, A., Mureșan, C. I., Suharoschi, R., & Pop, O. L. (2021). Protein-Based Films and Coatings for Food Industry Applications. In Polymers (Vol. 13, Issue 5, p. 769). MDPI AG. https://doi.org/10.3390/polym13050769 DOI: https://doi.org/10.3390/polym13050769
Karimian, Z., Bafroee, A.S.T., & Sharifan, A. (2019). Physico-Mechanical and Antimicrobial Properties of Isolated Soy Protein Film Incorporated with Peppermint Essential Oil on Raw Hamburger. In Journal of Agricultural Science and Technology (Vol. 21, p. 1145). Tarbiat Modares University.
Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2019). Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging. In Food Engineering Reviews (Vol. 11, Issue 2, pp. 78–92). Springer Science and Business Media LLC. https://doi.org/10.1007/s12393-019-09189-w DOI: https://doi.org/10.1007/s12393-019-09189-w
Garrido, T., Leceta, I., Cabezudo, S., Guerrero, P., & de la Caba, K. (2016). Tailoring soy protein film properties by selecting casting or compression as processing methods. In European Polymer Journal (Vol. 85, pp. 499–507). Elsevier BV. https://doi.org/10.1016/j.eurpolymj.2016.11.007 DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.007
Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of Protein-Based Films and Coatings for Food Packaging: A Review. In Polymers (Vol. 11, Issue 12, p. 2039). MDPI AG. https://doi.org/10.3390/polym11122039.
Zhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: A review. In Environmental Progress & Sustainable Energy (Vol. 29, Issue 2, pp. 203–220). Wiley. https://doi.org/10.1002/ep.10463 DOI: https://doi.org/10.1002/ep.10463
Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of Protein-Based Films and Coatings for Food Packaging: A Review. In Polymers (Vol. 11, Issue 12, p. 2039). MDPI AG. https://doi.org/10.3390/polym11122039 DOI: https://doi.org/10.3390/polym11122039
Akrami, S., Saki, M., Marashi Hossaeini, S. M., Sabahi, S., & Noori, S. M. A. (2022). Application of soy protein-based films and coatings on the shelf life of food products: a mini-review of recent publications with emphasis on nanotechnology. In Journal of Food Measurement and Characterization (Vol. 17, Issue 2, pp. 1393–1401). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-022-01708-4 DOI: https://doi.org/10.1007/s11694-022-01708-4
González, A., Strumia, M. C., & Alvarez Igarzabal, C. I. (2011). Cross-linked soy protein as material for biodegradable films: Synthesis, characterization and biodegradation. In Journal of Food Engineering (Vol. 106, Issue 4, pp. 331–338). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2011.05.030 DOI: https://doi.org/10.1016/j.jfoodeng.2011.05.030
Li, J., Lin, H., Bean, S. R., Sun, X. S., & Wang, D. (2020). Evaluation of adhesive performance of a mixture of soy, sorghum and canola proteins. In Industrial Crops and Products (Vol. 157, p. 112898). Elsevier BV. https://doi.org/10.1016/j.indcrop.2020.112898 DOI: https://doi.org/10.1016/j.indcrop.2020.112898
Li, K., Jin, S., Zhou, Y., Zhang, F., Zeng, G., Li, J., Shi, S. Q., & Li, J. (2022). Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity. In Composites Part B: Engineering (Vol. 240, p. 109987). Elsevier BV. https://doi.org/10.1016/j.compositesb.2022.109987 DOI: https://doi.org/10.1016/j.compositesb.2022.109987
Behbahani, B. A., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., & Mohebbi, M. (2017). Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. In International Journal of Biological Macromolecules (Vol. 94, pp. 515–526). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2016.10.055 DOI: https://doi.org/10.1016/j.ijbiomac.2016.10.055
Beikzadeh, S., Khezerlou, A., Jafari, S. M., Pilevar, Z., & Mortazavian, A. M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. In Advances in Colloid and Interface Science (Vol. 280, p. 102164). Elsevier BV. https://doi.org/10.1016/j.cis.2020.102164 DOI: https://doi.org/10.1016/j.cis.2020.102164
Yu, Z., Sun, L., Wang, W., Zeng, W., Mustapha, A., & Lin, M. (2018). Soy protein-based films incorporated with cellulose nanocrystals and pine needle extract for active packaging. In Industrial Crops and Products (Vol. 112, pp. 412–419). Elsevier BV. https://doi.org/10.1016/j.indcrop.2017.12.031 DOI: https://doi.org/10.1016/j.indcrop.2017.12.031
Fu, M., Cao, M., Duan, J., Zhou, Q., Dong, M., Zhang, T., Liu, X., & Duan, X. (2022). Research on the Properties of Zein, Soy Protein Isolate, and Wheat Gluten Protein-Based Films Containing Cellulose Nanocrystals. In Foods (Vol. 11, Issue 19, p. 3010). MDPI AG. https://doi.org/10.3390/foods11193010 DOI: https://doi.org/10.3390/foods11193010
Silva, A. N. M. da, Amado, L. R., Barrosa, B. C. B. de, Sakai, O. A., Picolloto, A. M., & Silva, K. de S. (2023). Effect of amaranthus viridis e bidens pilosa leaves extract on properties of soy protein-locust bean gum active films. In Research, Society and Development (Vol. 12, Issue 4, p. e10512440991). Research, Society and Development. https://doi.org/10.33448/rsd-v12i4.40991 DOI: https://doi.org/10.33448/rsd-v12i4.40991
Zhao, G., Zhou, C., & Fan, F. (2021). Preparation and Properties of Soy Protein Isolate/Cotton-Nanocrystalline Cellulose Films. In H. Xiao (Ed.), International Journal of Polymer Science (Vol. 2021, pp. 1–7). Hindawi Limited. https://doi.org/10.1155/2021/5518136 DOI: https://doi.org/10.1155/2021/5518136
Xie, L., Hettiarachchy, N. S., Ju, Z. Y., Meullenet, J., Wang, H., Slavik, M. F., & Janes, M. E. (2002). Edible Film Coating to Minimize Eggshell Breakage and Reduce Post-Wash Bacterial Contamination Measured by Dye Penetration in Eggs. In Journal of Food Science (Vol. 67, Issue 1, pp. 280–284). Wiley. https://doi.org/10.1111/j.1365-2621.2002.tb11398.x DOI: https://doi.org/10.1111/j.1365-2621.2002.tb11398.x
Shah, Y. A., Bhatia, S., Al-Harrasi, A., Afzaal, M., Saeed, F., Anwer, M. K., Khan, M. R., Jawad, M., Akram, N., & Faisal, Z. (2023). Mechanical Properties of Protein-Based Food Packaging Materials. In Polymers (Vol. 15, Issue 7, p. 1724). MDPI AG. https://doi.org/10.3390/polym15071724 DOI: https://doi.org/10.3390/polym15071724
Mikus, M., Galus, S., Ciurzyńska, A., & Janowicz, M. (2021). Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours. In Molecules (Vol. 26, Issue 12, p. 3738). MDPI AG. https://doi.org/10.3390/molecules26123738 DOI: https://doi.org/10.3390/molecules26123738
Li, K., Jin, S., Han, Y., Li, J., & Chen, H. (2017). Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal–Graphene Artificial Nacre Nanocomposite. In Polymers (Vol. 9, Issue 12, p. 321). MDPI AG. https://doi.org/10.3390/polym9080321 DOI: https://doi.org/10.3390/polym9080321
Song, Jung-Il. (2014). Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties. Composites Research, 27(5), 196–200. https://doi.org/10.7234/COMPOSRES.2014.27.5.196 DOI: https://doi.org/10.7234/composres.2014.27.5.196
Wei, N., Liao, M., Xu, K., & Qin, Z. (2021). High-performance soy protein-based films from cellulose nanofibers and graphene oxide constructed synergistically via hydrogen and chemical bonding. In RSC Advances (Vol. 11, Issue 37, pp. 22812–22819). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d1ra02484a DOI: https://doi.org/10.1039/D1RA02484A
Swain, S. K., Priyadarshini, P. P., & Patra, S. K. (2012). Soy Protein/Clay Bionanocomposites as Ideal Packaging Materials. In Polymer-Plastics Technology and Engineering (Vol. 51, Issue 12, pp. 1282–1287). Informa UK Limited. https://doi.org/10.1080/03602559.2012.700542 DOI: https://doi.org/10.1080/03602559.2012.700542
Alizadeh Sani, M., Khezerlou, A., Tavassoli, M., Mohammadi, K., Hassani, S., Ehsani, A., & McClements, D. J. (2022). Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. In Colloids and Interfaces (Vol. 6, Issue 4, p. 57). MDPI AG. https://doi.org/10.3390/colloids6040057 DOI: https://doi.org/10.3390/colloids6040057
Ran, R., Wang, L., Su, Y., He, S., He, B., Li, C., Wang, C., Liu, Y., & Chen, S. (2021). Preparation of pH‐indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh‐cut apple freshness. In Journal of Food Science (Vol. 86, Issue 10, pp. 4594–4610). Wiley. https://doi.org/10.1111/1750-3841.15884 DOI: https://doi.org/10.1111/1750-3841.15884
Jm, G., & Mn, G. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. In Journal of Heart Valve Disease (Vol. 5, p. 518). ICR Publishers.
Ma, B., Wang, X., Wu, C., & Chang, J. (2014). Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. In Regenerative Biomaterials (Vol. 1, Issue 1, pp. 81–89). Oxford University Press (OUP). https://doi.org/10.1093/rb/rbu009 DOI: https://doi.org/10.1093/rb/rbu009
Yoo, J. S., Kim, Y. J., Kim, S. H., & Choi, S. H. (2011). Study on Genipin: A New Alternative Natural Crosslinking Agent for Fixing Heterograft Tissue. In The Korean Journal of Thoracic and Cardiovascular Surgery (Vol. 44, Issue 3, pp. 197–207). Korean Society for Thoracic and Cardiovascular Surgery. https://doi.org/10.5090/kjtcs.2011.44.3.197 DOI: https://doi.org/10.5090/kjtcs.2011.44.3.197
Soliman, E. A., Tawfik, M. S., El-Sayed, H., & Moharram, Y. G. (2007). Preparation and Characterization of Soy Protein Based Edible/Biodegradable Films. In American Journal of Food Technology (Vol. 2, Issue 6, pp. 462–476). Science Alert. https://doi.org/10.3923/ajft.2007.462.476 DOI: https://doi.org/10.3923/ajft.2007.462.476
Zeng, J., Gao, Y., Zhu, S., He, H., & Yu, M. (2023). Effect of genipin crosslinking on the property of chitosan‐soy protein isolate film. In Journal of Applied Polymer Science (Vol. 140, Issue 28). Wiley. https://doi.org/10.1002/app.54055 DOI: https://doi.org/10.1002/app.54055
Jayachandran, B., Parvin, T. N., Alam, M. M., Chanda, K., & MM, B. (2022). Insights on Chemical Crosslinking Strategies for Proteins. In Molecules (Vol. 27, Issue 23, p. 8124). MDPI AG. https://doi.org/10.3390/molecules27238124 DOI: https://doi.org/10.3390/molecules27238124
Kanoujia, J., Singh, M., Singh, P., Parashar, P., Tripathi, C. B., Arya, M., & Saraf, S. A. (2016). Genipin crosslinked soy-whey based bioactive material for atorvastatin loaded nanoparticles: preparation, characterization and in vivo antihyperlipidemic study. In RSC Advances (Vol. 6, Issue 96, pp. 93275–93287). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c6ra16830b DOI: https://doi.org/10.1039/C6RA16830B
Zhao, Y., He, M., Zhao, L., Wang, S., Li, Y., Gan, L., Li, M., Xu, L., Chang, P. R., Anderson, D. P., & Chen, Y. (2016). Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. In ACS Applied Materials & Interfaces (Vol. 8, Issue 4, pp. 2781–2795). American Chemical Society (ACS). https://doi.org/10.1021/acsami.5b11152 DOI: https://doi.org/10.1021/acsami.5b11152
Rani, S., & Kumar, R. (2019). A Review on Material and Antimicrobial Properties of Soy Protein Isolate Film. In Journal of Polymers and the Environment (Vol. 27, Issue 8, pp. 1613–1628). Springer Science and Business Media LLC. https://doi.org/10.1007/s10924-019-01456-5 DOI: https://doi.org/10.1007/s10924-019-01456-5
Rhim, J. W., & Weller, C. L. (2000). Properties of Formaldehyde Adsorbed Soy Protein Isolate Films. In Food Science and Biotechnology (Vol. 9, p. 228). pringer Netherlands.
Huang, G. Q., Xiao, J. X., Qiu, H. W., & Yang, J. (2014). Cross-linking of soybean protein isolate–chitosan coacervate with transglutaminase utilizing capsanthin as the model core. In Journal of Microencapsulation (Vol. 31, Issue 7, pp. 708–715). Informa UK Limited. https://doi.org/10.3109/02652048.2014.918665 DOI: https://doi.org/10.3109/02652048.2014.918665
Ding, X., Zeng, N., Zhang, G., Pan, J., Hu, X., & Gong, D. (2019). Influence of transglutaminase‐assisted ultrasound treatment on the structure and functional properties of soy protein isolate. In Journal of Food Processing and Preservation (Vol. 43, Issue 11). Hindawi Limited. https://doi.org/10.1111/jfpp.14203 DOI: https://doi.org/10.1111/jfpp.14203
Liu, Y., Zhang, Y., Guo, Z., Wang, C., Kang, H., Li, J., Wang, W., Li, Y., Lu, F., & Liu, Y. (2021). Enhancing the functional characteristics of soy protein isolate via cross‐linking catalyzed by Bacillus subtilis transglutaminase. In Journal of the Science of Food and Agriculture (Vol. 101, Issue 10, pp. 4154–4160). Wiley. https://doi.org/10.1002/jsfa.11052 DOI: https://doi.org/10.1002/jsfa.11052
Kim, K. M., Weller, C. L., Hanna, M. A., & Gennadios, A. (2002). Heat Curing of Soy Protein Films at Selected Temperatures and Pressures. In LWT - Food Science and Technology (Vol. 35, Issue 2, pp. 140–145). Elsevier BV. https://doi.org/10.1006/fstl.2001.0825 DOI: https://doi.org/10.1006/fstl.2001.0825
Wang, X., Wang, W., Hu, X., Zhu, X., Wang, L., Zhang, N., & Yu, D. (2022). Structural and physical properties of soybean protein isolate films with ohmic heating treatment: Impacts of electric field. In Innovative Food Science & Emerging Technologies (Vol. 82, p. 103213). Elsevier BV. https://doi.org/10.1016/j.ifset.2022.103213 DOI: https://doi.org/10.1016/j.ifset.2022.103213
Rangavajhyala, N., Ghorpade, V., & Hanna, M. (1997). Solubility and Molecular Properties of Heat-Cured Soy Protein Films. In Journal of Agricultural and Food Chemistry (Vol. 45, Issue 11, pp. 4204–4208). American Chemical Society (ACS). https://doi.org/10.1021/jf970204859. DOI: https://doi.org/10.1021/jf9702048
Han, Y., & Wang, L. (2016). Improved water barrier and mechanical properties of soy protein isolate films by incorporation of SiO2 nanoparticles. In RSC Advances (Vol. 6, Issue 113, pp. 112317–112324). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c6ra23461e. DOI: https://doi.org/10.1039/C6RA23461E
Balçık Tamer, Y. (2023). Development of citric acid crosslinked biodegradable chitosan/hydroxyethyl cellulose/organo-modified nanoclay composite films as sustainable food packaging materials. In Polymer-Plastics Technology and Materials (Vol. 62, Issue 9, pp. 1138–1156). Informa UK Limited. https://doi.org/10.1080/25740881.2023.2195908 DOI: https://doi.org/10.1080/25740881.2023.2195908
Debeaufort, F., Riondet, J., Brachais, C.-H., & Benbettaieb, N. (2022). Influence of Gelatin-Based Coatings Crosslinked with Phenolic Acids on PLA Film Barrier Properties. In Coatings (Vol. 12, Issue 7, p. 993). MDPI AG. https://doi.org/10.3390/coatings12070993 DOI: https://doi.org/10.3390/coatings12070993
Vieira, T. M., Moldão-Martins, M., & Alves, V. D. (2021). Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings. In Foods (Vol. 10, Issue 7, p. 1654). MDPI AG. https://doi.org/10.3390/foods10071654 DOI: https://doi.org/10.3390/foods10071654
Soro, A. B., Noore, S., Hannon, S., Whyte, P., Bolton, D. J., O’Donnell, C., & Tiwari, B. K. (2021). Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. In Food Packaging and Shelf Life (Vol. 29, p. 100722). Elsevier BV. https://doi.org/10.1016/j.fpsl.2021.10072260 DOI: https://doi.org/10.1016/j.fpsl.2021.100722
Milani, J. M., & Tirgarian, B. (2020). An overview of Edible Protein-Based Packaging: Main Sources, Advantages, Drawbacks, Recent Progressions and Food Applications. In Journal of Packaging Technology and Research (Vol. 4, Issue 1, pp. 103–115). Springer Science and Business Media LLC. https://doi.org/10.1007/s41783-020-00086-w62 DOI: https://doi.org/10.1007/s41783-020-00086-w
Azeredo, H. M. C., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact – A review. In Trends in Food Science & Technology (Vol. 52, pp. 109–122). Elsevier BV. https://doi.org/10.1016/j.tifs.2016.04.008 DOI: https://doi.org/10.1016/j.tifs.2016.04.008
Liu, Y., Zhang, H., Chi, Y., Wu, Y., Cao, W., Li, T., & Xu, L. (2017). PROPERTIES OF SOY PROTEIN ISOLATE ANTIMICROBIAL FILMS AND ITS APPLICATION IN PRESERVATION OF MEAT. In Emirates Journal of Food and Agriculture (p. 589). Faculty of Food and Agriculture, United Arab Emirates University. https://doi.org/10.9755/ejfa.2017-05-1070 DOI: https://doi.org/10.9755/ejfa.2017-05-1070
Song, D.-H., Hoa, V. B., Kim, H. W., Khang, S. M., Cho, S.-H., Ham, J.-S., & Seol, K.-H. (2021). Edible Films on Meat and Meat Products. In Coatings (Vol. 11, Issue 11, p. 1344). MDPI AG. https://doi.org/10.3390/coatings11111344 DOI: https://doi.org/10.3390/coatings11111344
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.