Development of active and biodegradable film of ternary-based for food application


  • Júlia da Rocha University of Blumenau, Department of Chemical Engineering, São Paulo Street 3250, Blumenau, Brazil, Tel.: +5547999487753
  • Syed Khalid Mustafa Department of Chemistry, Faculty of Science, P.O. Box 741, University of Tabuk, Tabuk-71491, Saudi Arabia, Tel: +966 53 121 0675
  • Antalov Jagnandan Department of Mathematics, Physics and Statistics, Faculty of Natural Sciences, University of Guyana, P.O. Box 101110 Georgetown, Guyana, South America, Tel: +592 650 0778
  • Mohammad Ayaz Ahmad Department of Mathematics, Physics and Statistics, Faculty of Natural Sciences, University of Guyana, P.O. Box 101110 Georgetown, Guyana, South America, Tel: +91853407462
  • Maksim Rebezov Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhin st, Moscow 109316, Russian Federation, Tel.: +79999002365
  • Mohammad Ali Shariati Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, 238«G» Gagarin Ave., Almaty, 050060, Republic of Kazakhstan
  • Carolina Krebs de Souza University of Blumenau, Department of Chemical Engineering, São Paulo Street 3250, Blumenau, Brazil, Tel.: +5547999956373



anthocyanin, biodegradable film, biopolymer, chitosan, packaging, propolis


The effectiveness of plastic packaging in protecting food is quite appreciable, but its non-biodegradable characteristic raises concerns about environmental impacts. This has drawn attention to the development of alternative materials for food packaging from bio-based polymers. Chitosan, a polysaccharide with biodegradable, biocompatible, and non-toxic properties, is widely used in the formulation of food films. The objective of this work was to create a biodegradable and sustainable chitosan-based film whose active and intelligent action is obtained from red cabbage anthocyanins and the addition of propolis. The edible film’s thickness and total polyphenol content were 61.0 ±0.1μm and 20.08 ±0.5 mgAG g-1, respectively. The content of phenolic compounds and the biodegradation showed significant results (p <0.05), besides the good thermal stability to 200 °C and transparency. The proposed formulation developed an edible, biodegradable, and active (antioxidant) film with interesting heat-sealing resistance, moisture barrier and gas transfer, which contributes to increasing food shelf life.


Download data is not yet available.


Metrics Loading ...


Finardi, S., Hoffmann, T. G., Angioletti, B. L., Mueller, E., Lazzaris, R. S., Bertoli, S. L., Hlebová, M., Khayrullin, M., Nikolaeva, N., Shariati, M. A., & Krebs de Souza, C. (2022). Development and application of antioxidant coating on fragaria spp. stored under isothermal conditions. In Journal of microbiology, biotechnology and food sciences (Vol. 11, Issue 4, p. e5432). Slovak University of Agriculture in Nitra. DOI:

Pergentino Dos Santos, S., Angioletti, B. L., Hoffmann, T. G., Gonçalves, M. J., Bertoli, S. L., Hlebová, M., Khayrullin, M., Gribkova, V., Shariati, M. A., & Krebs De Souza, C. (2022). Whey based biopolymeric coating as an alternative to improve quality of fresh fruits (malpighia emarginata d.c.) from southern brazil. In Journal of microbiology, biotechnology and food sciences (Vol. 11, Issue 5, p. e5433). Slovak University of Agriculture in Nitra. DOI:

Angioletti, B. L., Pergentino, S., Hoffmann, T. G., Goncalves, M. J., Carvalho, L. F., Bertoli, S. L., Souza, C. K. (2020). Aloe vera gel as natural additive to improve oxidative stability in refrigerated beef burger stored in aerobic and vacuum packaging. In: 2020 Virtual AIChE Annual Meeting, San Francisco.

Pergentino, S., Angioletti, B. L., Hoffmann, T. G., Goncalves, M. J., Carvalho, L. F., Bertoli, S. L., Souza, C. K. (2020). Influence of whey protein edible film and refrigeration temperature on quality of acerola in natura during postharvest storage. In: 2020 Virtual AIChE Annual Meeting, San Francisco.

Sid, S., Mor, R. S., Kishore, A., & Sharanagat, V. S. (2021). Bio-sourced polymers as alternatives to conventional food packaging materials: A review. In Trends in Food Science & Technology (Vol. 115, pp. 87–104). Elsevier BV. DOI:

Sarkar, S., Das, D., Dutta, P., Kalita, J., Wann, S. B., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. In Carbohydrate Polymers (Vol. 247, p. 116594). Elsevier BV. DOI:

Baek, J., Wahid-Pedro, F., Kim, K., Kim, K., & Tam, K. C. (2019). Phosphorylated-CNC/modified-chitosan nanocomplexes for the stabilization of Pickering emulsions. In Carbohydrate Polymers (Vol. 206, pp. 520–527). Elsevier BV. DOI:

Hoffmann, T. G., Amaral D. P., Angioletti, B., Bertoli, S. L., Peres, L. V., Reiter, M. G. R., & de Souza, C. K. (2019). Potentials nanocomposites in food packaging. In Chemical Engineering Transactions (Vol. 75, pp. 253–258).

Souza, V. G. L., Pires, J. R. A., Rodrigues, C., Coelhoso, I. M., & Fernando, A. L. (2020). Chitosan composites in packaging industry-current trends and future challenges. In Polymers (Vol. 12, Issue 2, p. 417). MDPI AG. DOI:

Alirezalu, K., Hesari, J., Nemati, Z., Munekata, P. E. S., Barba, F. J., & Lorenzo, J. M. (2019). Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. In Food Research International (Vol. 120, pp. 839–850). Elsevier BV. DOI:

Sahariah, P., & Másson, M. (2017). Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. In Biomacromolecules (Vol. 18, Issue 11, pp. 3846–3868). American Chemical Society (ACS). DOI:

Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. In Carbohydrate Polymers (Vol. 169, pp. 264–271). Elsevier BV. DOI:

Karagöz, Ş., & Demirdöven, A. (2019). Effect of chitosan coatings with and without Stevia rebaudiana and modified atmosphere packaging on quality of cold stored fresh-cut apples. In LWT (Vol. 108, pp. 332–337). Elsevier BV. DOI:

Lin, L., Gu, Y., & Cui, H. (2018). Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. In Food Packaging and Shelf Life (Vol. 18, pp. 21–30). Elsevier BV. DOI:

Xiong, Y., Chen, M., Warner, R. D., & Fang, Z. (2020). Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. In Food Control (Vol. 110, p. 107018). Elsevier BV. DOI:

Alves Pinto, L. D. M., Taironi Do Prado, N. R., & De Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. In Revista Eletrônica de Farmácia (Vol. 8, Issue 3). Universidade Federal de Goias. DOI:

Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2015). Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 13, pp. 2223–2230). Informa UK Limited. DOI:

Kurek, M., Garofulić, I. E., Bakić, M. T., Ščetar, M., Uzelac, V. D., & Galić, K. (2018). Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. In Food Hydrocolloids (Vol. 84, pp. 238–246). Elsevier BV. DOI:

Wang, X., Yong, H., Gao, L., Li, L., Jin, M., & Liu, J. (2019). Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. In Food Hydrocolloids (Vol. 89, pp. 56–66). Elsevier BV. DOI:

Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. In Food Chemistry (Vol. 272, pp. 306–312). Elsevier BV. DOI:

Hoffmann, T. G., Angioletti, B. L., Bertoli, S. L., & de Souza, C. K. (2021). Intelligent pH-sensing film based on jaboticaba peels extract incorporated on a biopolymeric matrix. In Journal of Food Science and Technology (Vol. 59, Issue 3, pp. 1001–1010). Springer Science and Business Media LLC. DOI:

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. In Food Hydrocolloids (Vol. 87, pp. 858–868). Elsevier BV. DOI:

Pereira, V. A., Jr., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. In Food Hydrocolloids (Vol. 43, pp. 180–188). Elsevier BV. DOI:

Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colourimetric pH indicator based on bacterial cellulose nanofibers and red cabbage ( Brassica oleraceae ) extract. In Carbohydrate Polymers (Vol. 156, pp. 193–201). Elsevier BV. DOI:

Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. In Carbohydrate Polymers (Vol. 151, pp. 150–159). Elsevier BV. DOI:

De Carli, C., Aylanc, V., Mouffok, K. M., Santamaria-Echart, A., Barreiro, F., Tomás, A., Pereira, C., Rodrigues, P., Vilas-Boas, M., & Falcão, S. I. (2022). Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. In International Journal of Biological Macromolecules (Vol. 213, pp. 486–497). Elsevier BV. DOI:

Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. In International Journal of Biological Macromolecules (Vol. 179, pp. 90–100). Elsevier BV. DOI:

Souza, V., Fernando, A., Pires, J., Rodrigues, P., Lopes, A., Fernandes, F. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops And Products, (Vol. 107, pp. 565-572). Elsevier BV. DOI:

Shahabi, N., Soleimani, S., & Ghorbani, M. (2023). Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. In International Journal of Biological Macromolecules (Vol. 231, p. 123350). Elsevier BV. DOI:

Cheng, M., Cui, Y., Yan, X., Zhang, R., Wang, J., & Wang, X. (2022). Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts. In Food Hydrocolloids (Vol. 124, p. 107225). Elsevier BV. DOI:

Freitas, P. A. V., de Oliveira, T. V., Silva, R. R. A., Fialho e Moraes, A. R., Pires, A. C. dos S., Soares, R. R. A., Junior, N. S., & Soares, N. F. F. (2020). Effect of pH on the intelligent film-forming solutions produced with red cabbage extract and hydroxypropylmethylcellulose. In Food Packaging and Shelf Life (Vol. 26, p. 100604). Elsevier BV. DOI:

Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. In Journal of Agriculture and Food Research (Vol. 9, p. 100340). Elsevier BV. DOI:

Hashim, S. B. H., Tahir, H. E., Lui, L., Zhang, J., Zhai, X., Mahdi, A. A., Ibrahim, N. A., Mahunu, G. K., Hassan, M. M., Xiaobo, Z., & Jiyong, S. (2023). Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. In Food Chemistry (Vol. 399, p. 133824). Elsevier BV. DOI:

Marangoni Júnior, L., Jamróz, E., Gonçalves, S. de Á., da Silva, R. G., Alves, R. M. V., & Vieira, R. P. (2022). Preparation and characterization of sodium alginate films with propolis extract and nano-SiO2. In Food Hydrocolloids for Health (Vol. 2, p. 100094). Elsevier BV. DOI:

Hoffmann, T. G., Ronzoni A. F., da Silva D. L., Bertoli S. L., & de Souza C. K. (2021). Cooling Kinetics and Mass Transfer in Postharvest Preservation of Fresh Fruits and Vegetables Under Refrigerated Conditions. Chemical Engineering Transactions, 87, 115–120.

Hoffmann, T.G., Meinert, C., Ormelez, F., Campani, C., Bertoli, S.L., Ender, L., De Souza, C.K. (2023). Fresh food shelf-life improvement by humidity regulation in domestic refrigeration. Procedia Computer Science (Vol.217, pp. 826-834). Elsevier BV. DOI:

Bertotto, C., Bilck, A. P., Yamashita, F., Anjos, O., Bakar Siddique, M. A., Harrison, S. M., Brunton, N. P., & Carpes, S. T. (2022). Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product. In LWT (Vol. 157, p. 113124). Elsevier BV. DOI:

Ren, G., He, Y., Lv, J., Zhu, Y., Xue, Z., Zhan, Y., Sun, Y., Luo, X., Li, T., Song, Y., Niu, F., Huang, M., Fang, S., Fu, L., & Xie, H. (2023). Highly biologically active and pH-sensitive collagen hydrolysate-chitosan film loaded with red cabbage extracts realizing dynamic visualization and preservation of shrimp freshness. In International Journal of Biological Macromolecules (Vol. 233, p. 123414). Elsevier BV. DOI:

Fernández-Marín, R., Labidi, J., Andrés, M. Á., & Fernandes, S. C. M. (2020). Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. In Polymer Degradation and Stability (Vol. 179, p. 109227). Elsevier BV. DOI:

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. In Food Hydrocolloids (Vol. 29, Issue 2, pp. 290–297). Elsevier BV. DOI:

Ghosh, T., Priyadarshi, R., Krebs de Souza, C., Angioletti, B. L., & Rhim, J.-W. (2022). Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. In Trends in Food Science & Technology (Vol. 125, pp. 43–53). Elsevier BV. DOI:

Correa-Pacheco, Z. N., Bautista-Baños, S., Ramos-García, M. de L., Martínez-González, M. del C., & Hernández-Romano, J. (2019). Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. In Progress in Organic Coatings (Vol. 137, p. 105326). Elsevier BV. DOI:

Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. In Food Hydrocolloids (Vol. 61, pp. 695–702). Elsevier BV. DOI:

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. In Materials Science and Engineering: C (Vol. 33, Issue 4, pp. 1819–1841). Elsevier BV. DOI:

Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. In Food Chemistry (Vol. 110, Issue 2, pp. 428–435). Elsevier BV. DOI:

Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F., & Tan, W. K. (2021). Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. In Polymer Degradation and Stability (Vol. 188, p. 109563). Elsevier BV. DOI:

Tu, H., Li, X., Xie, K., Zhang, J., Liu, Y., shao, X., Lin, X., Zhang, R., & Duan, B. (2023). High strength and biodegradable dielectric film with synergistic alignment of chitosan nanofibrous networks and BNNSs. In Carbohydrate Polymers (Vol. 299, p. 120234). Elsevier BV. DOI:

Akyuz, L., Kaya, M., Ilk, S., Cakmak, Y. S., Salaberria, A. M., Labidi, J., Yılmaz, B. A., & Sargin, I. (2018). Effect of different animal fat and plant oil additives on physicochemical, mechanical, antimicrobial and antioxidant properties of chitosan films. In International Journal of Biological Macromolecules (Vol. 111, pp. 475–484). Elsevier BV. DOI:

Ruggero, F., Carretti, E., Gori, R., Lotti, T., & Lubello, C. (2020). Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. In Chemosphere (Vol. 246, p. 125770). Elsevier BV. DOI:

Ardjoum, N., Chibani, N., Shankar, S., Fadhel, Y. B., Djidjelli, H., & Lacroix, M. (2021). Development of antimicrobial films based on poly(lactic acid) incorporated with Thymus vulgaris essential oil and ethanolic extract of Mediterranean propolis. In International Journal of Biological Macromolecules (Vol. 185, pp. 535–542). Elsevier BV. DOI:

Thirunathan, P., Arnz, P., Husny, J., Gianfrancesco, A., & Perdana, J. (2018). Thermogravimetric analysis for rapid assessment of moisture diffusivity in polydisperse powder and thin film matrices. In Food Chemistry (Vol. 242, pp. 519–526). Elsevier BV. DOI:

Zhang, W., Li, X., & Jiang, W. (2020). Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. In International Journal of Biological Macromolecules (Vol. 154, pp. 1205–1214). Elsevier BV. DOI:

Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. In Food Hydrocolloids (Vol. 90, pp. 216–224). Elsevier BV. DOI:

Lim, W. S., Ock, S. Y., Park, G. D., Lee, I. W., Lee, M. H., & Park, H. J. (2020). Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. In Food Packaging and Shelf Life (Vol. 26, p. 100556). Elsevier BV. DOI:




How to Cite

da Rocha, J., Mustafa, S. K., Jagnandan, A., Ahmad, M. A., Rebezov, M., Shariati, M. A., & Krebs de Souza, C. (2023). Development of active and biodegradable film of ternary-based for food application. Potravinarstvo Slovak Journal of Food Sciences, 17, 148–158.

Most read articles by the same author(s)