The effect of storage conditions on the microstructure of sterilized canned meat

Authors

  • Tatyana Kuznetsova V. M. Gorbatov Federal Research Center for Food Systems, Department of Scientific-Applied and Technological Developments, Talalikhina str., 26, 109316, Moscow, Russian Federation, Tel.: +8-916-636-03-93
  • Valentina Krylova V. M. Gorbatov Federal Research Center for Food Systems, Department of Scientific-Applied and Technological Developments, Talalikhina str., 26, 109316, Moscow, Russian Federation, Tel.: +8(495)676-95-11, ♯212
  • Tatyana Gustova V. M. Gorbatov Federal Research Center for Food Systems, Department of Scientific-Applied and Technological Developments, Talalikhina str., 26, 109316, Moscow, Russian Federation, Tel.: +8(495)676-95-11, ♯227

DOI:

https://doi.org/10.5219/1714

Keywords:

canned meat, model, freezing, storage, microstructure, physicochemical processes

Abstract

The article presents the results of studies of changes in the microstructure of the meat system as a whole and its protein component during freezing, subsequent defrosting, and storage of canned meat. Microstructural analysis of the prototypes showed the presence of several types of destruction of muscle fibers, loosening of collagen fiber bundles, and the formation of multiple cavities due to the action of ice crystals. The main components of sterilized canned meat had new characteristics after thawing, such as decreased transverse striations of muscle tissue fibers, loosening of myofibrils, changes in the size and shape of sarcomeres, violation of sarcolemma integrity, and multiple fiber fragmentation with the formation of a fine-grained protein mass. Freezing did not lead to a decrease in the content of the high-molecular-weight protein fraction of the nitrogen system, the ratio of the peptide fraction content to the residual nitrogen remained equal to 5.2. However, the ratio of non-protein nitrogen to total nitrogen decreased by 1.8 times due to the destruction of low-molecular-weight nitrogen under the action of ice crystals. The dynamics of the eh values of control and experimental canned food samples during storage indicated the loss of oxidative stability of the protein system of the samples subjected to freezing. Based on the results, we would like to recommend that logistic organizations sort and confirm canned meat safety and quality requirements after thawing in the case of unforeseen circumstances.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sørheim, O., Ofstad, R., & Lea, P. (2004). Effects of carbon dioxide on yield, texture, and microstructure of cooked ground beef. In Meat Science (Vol. 67, Issue 2, pp. 231–236). Elsevier bv. https://doi.org/10.1016/j.meatsci.2003.10.010 DOI: https://doi.org/10.1016/j.meatsci.2003.10.010

Bolumar, T., Bindrich, U., Toepfl, S., Toldrá, F., & Heinz, V. (2014). Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin, and peptidase activities and microstructure of beef loin steaks from Holstein young bulls. In Meat Science (Vol. 98, Issue 4, pp. 759–765). Elsevier bv. https://doi.org/10.1016/j.meatsci.2014.07.024 DOI: https://doi.org/10.1016/j.meatsci.2014.07.024

Li, F., Wang, B., Liu, Q., Chen, Q., Zhang, H., Xia, X., & Kong, B. (2019). Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its structural modification under different thawing methods. In Meat Science (Vol. 147, pp. 108–115). Elsevier bv. https://doi.org/10.1016/j.meatsci.2018.09.003 DOI: https://doi.org/10.1016/j.meatsci.2018.09.003

Wang, Y., Liang, H., Xu, R., Lu, B., Song, X., & Liu, B. (2020). Effects of temperature fluctuations on the meat quality and muscle microstructure of frozen beef. In International Journal of Refrigeration (Vol. 116, pp. 1–8). Elsevier bv. https://doi.org/10.1016/j.ijrefrig.2019.12.025 DOI: https://doi.org/10.1016/j.ijrefrig.2019.12.025

Mulot, V., Fatou-Toutie, N., Benkhelifa, H., Pathier, D., & Flick, D. (2019). Investigating the effect of freezing operating conditions on the microstructure of frozen minced beef using an innovative x-ray micro-computed tomography method. In Journal of Food Engineering (Vol. 262, pp. 13–21). Elsevier bv. https://doi.org/10.1016/j.jfoodeng.2019.05.014 DOI: https://doi.org/10.1016/j.jfoodeng.2019.05.014

Krylova, V. B., & Gustova, T. V. (2016). Aspects of the destructive changes in the main nutrients of canned meat in pieces «stewed beef of the top grade» under the non-normative temperature and humidity conditions of storage. In Theory and Practice of Meat Processing (Vol. 1, Issue 3, pp. 21–34). The Gorbachov‘s all-Russian meat research institute. https://doi.org/10.21323/2414-438x-2016-1-3-21-34 DOI: https://doi.org/10.21323/2414-438X-2016-1-3-21-34

Saprykin, V. & Turbin D. (1997) Fundamentals of morphological diagnosis of skeletal muscle diseases. Moscow

Kuznetsova, T. G., Krylova, V. B., & Gustova, T. V. (2016). Effect of the negative temperatures on microstructure destruction in the (Stewed beef of top-grade) product. In All About Meat (Issue. 3, pp. 26-31). The Gorbachov‘s all-Russian meat research institute.

Tornberg, E. (2005). Effects of heat on meat proteins – implications on structure and quality of meat products. In Meat Science (Vol. 70, Issue 3, pp. 493–508). Elsevier bv. https://doi.org/10.1016/j.meatsci.2004.11.021 DOI: https://doi.org/10.1016/j.meatsci.2004.11.021

Santé-Lhoutellier, V., Astruc, T., Marinova, P., Greve, E., & Gatellier, P. (2008). Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. In Journal of Agricultural and Food Chemistry (Vol. 56, Issue 4, pp. 1488–1494). American chemical society (ACS). https://doi.org/10.1021/jf072999g DOI: https://doi.org/10.1021/jf072999g

Astruc, T., Gatellier, P., Labas, R., Lhoutellier, V. S., & Marinova, P. (2010). Microstructural changes in m. rectus abdominis bovine muscle after heating. In Meat Science (Vol. 85, Issue 4, pp. 743–751). Elsevier bv. https://doi.org/10.1016/j.meatsci.2010.03.035 DOI: https://doi.org/10.1016/j.meatsci.2010.03.035

Nikmaram, P., Yarmand, M., Emam-Djomeh, Z., & Darehabi, K. (2011). The Effect of Cooking Methods on Textural and Microstructure Properties of Veal Muscle (Longissimus dorsi). In Global Veterinaria (Vol. 6, Issue 2, pp.201–207). IDOSI.

Roldán, M., Antequera, T., Martín, A., Mayoral, A. I., & Ruiz, J. (2013). Effect of different temperature-time combinations on physicochemical, microbiological, textural, and structural features of sous-vide cooked lamb loins. In Meat Science (Vol. 93, Issue 3, pp. 572–578). Elsevier bv. https://doi.org/10.1016/j.meatsci.2012.11.014 DOI: https://doi.org/10.1016/j.meatsci.2012.11.014

Kaur, L., Maudens, E., Haisman, D. R., Boland, M. J., & Singh, H. (2014). Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries. In LWT - Food Science and Technology (Vol. 55, Issue 2, pp. 612–620). Elsevier BV. https://doi.org/10.1016/j.lwt.2013.09.023 DOI: https://doi.org/10.1016/j.lwt.2013.09.023

Supaphon, P., Kerdpiboon, S., Vénien, A., Loison, O., Sicard, J., Rouel, J., & Astruc, T. (2021). Structural changes in local thai beef during sous-vide cooking. In Meat Science (Vol. 175, p. 108442). Elsevier bv. https://doi.org/10.1016/j.meatsci.2021.108442 DOI: https://doi.org/10.1016/j.meatsci.2021.108442

Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012). Impact of freezing and thawing on the quality of meat: review. In Meat Science (Vol. 91, Issue 2, pp. 93–98). Elsevier bv. https://doi.org/10.1016/j.meatsci.2012.01.013 DOI: https://doi.org/10.1016/j.meatsci.2012.01.013

Xiong, Y., Decker, E., Faustman, C., & Lopez-Bote, C. J. (Eds.). (2020). Protein oxidation and implications for muscle food quality. Antioxidants in muscle foods: Nutritional strategies to improve quality, John Wiley and Sons, New York. 512 p. ISBN 0471314544.

Ertbjerg, P., & Puolanne, E. (2017). Muscle structure, sarcomere length, and influences on meat quality: a review. In Meat Science (Vol. 132, pp. 139–152). Elsevier bv. https://doi.org/10.1016/j.meatsci.2017.04.261 DOI: https://doi.org/10.1016/j.meatsci.2017.04.261

Grujić, R., Petrović, L., Pikula, B., & Amidžić, L. (1993). Definition of the optimum freezing rate—1. Investigation of structure and ultrastructure of beef m. Longissimus dorsi frozen at different freezing rates. In Meat Science (Vol. 33, Issue 3, pp. 301–318). Elsevier bv. https://doi.org/10.1016/0309-1740(93)90003-z DOI: https://doi.org/10.1016/0309-1740(93)90003-Z

Egelandsdal, B., Abie, S. M., Bjarnadottir, S., Zhu, H., Kolstad, H., Bjerke, F., Martinsen, ø. G., Mason, A., & Münch, D. (2019). Detectability of the degree of freeze damage in meat depends on analytic-tool selection. In Meat Science (Vol. 152, pp. 8–19). Elsevier bv. https://doi.org/10.1016/j.meatsci.2019.02.002 DOI: https://doi.org/10.1016/j.meatsci.2019.02.002

Lan, Y., Shang, Y., Song, Y., & Dong, Q. (2016). Changes in the quality of superchilled rabbit meat stored at different temperatures. In Meat Science (Vol. 117, pp. 173–181). Elsevier bv. https://doi.org/10.1016/j.meatsci.2016.02.017 DOI: https://doi.org/10.1016/j.meatsci.2016.02.017

Estévez, M. (2011). Protein carbonyls in meat systems: a review. In Meat Science (Vol. 89, Issue 3, pp. 259–279). Elsevier bv. https://doi.org/10.1016/j.meatsci.2011.04.025 DOI: https://doi.org/10.1016/j.meatsci.2011.04.025

Mitra, B., Rinnan, Å., & Ruiz-Carrascal, J. (2017). Tracking hydrophobicity state, aggregation behavior, and structural modifications of pork proteins under the influence of assorted heat treatments. In Food Research International (Vol. 101, pp. 266–273). Elsevier bv. https://doi.org/10.1016/j.foodres.2017.09.027 DOI: https://doi.org/10.1016/j.foodres.2017.09.027

Zielbauer, B. I., Franz, J., Viezens, B., & Vilgis, T. A. (2015). Physical Aspects of Meat Cooking: Time-Dependent Thermal Protein Denaturation and Water Loss. In Food Biophysics (Vol. 11, Issue 1, pp. 34–42). Springer Science and Business Media LLC. https://doi.org/10.1007/s11483-015-9410-7

Christensen, L., Ertbjerg, P., Løje, H., Risbo, J., Van den Berg, F. W. J., & Christensen, M. (2013). Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. In Meat Science (Vol. 93, Issue 4, pp. 787–795). Elsevier bv. https://doi.org/10.1016/j.meatsci.2012.12.001 DOI: https://doi.org/10.1016/j.meatsci.2012.12.001

Brüggemann, D. A., Brewer, J., Risbo, J., & Bagatolli, L. (2009). Second-harmonic generation microscopy: a tool for spatially and temporally resolved studies of heat-induced structural changes in meat. In food biophysics (Vol. 5, Issue 1, pp. 1–8). Springer Science and Business Media Llc. https://doi.org/10.1007/s11483-009-9137-4 DOI: https://doi.org/10.1007/s11483-009-9137-4

Yu, T.-Y., Morton, J. D., Clerens, S., & Dyer, J. M. (2016). Cooking-Induced protein modifications in meat. In Comprehensive Reviews in Food Science and Food Safety (Vol. 16, Issue 1, pp. 141–159). Wiley. https://doi.org/10.1111/1541-4337.12243 DOI: https://doi.org/10.1111/1541-4337.12243

Zielbauer, B. I., Franz, J., Viezens, B., & Vilgis, T. A. (2015). Physical aspects of meat cooking: time-dependent thermal protein denaturation and water loss. In Food Biophysics (Vol. 11, Issue 1, pp. 34–42). Springer Science and Business Media LLC. https://doi.org/10.1007/s11483-015-9410-7 DOI: https://doi.org/10.1007/s11483-015-9410-7

Purslow, P. P. (2018). Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. In Meat Science (Vol. 144, pp. 127–134). Elsevier BV. https://doi.org/10.1016/j.meatsci.2018.03.026 DOI: https://doi.org/10.1016/j.meatsci.2018.03.026

Dominguez-Hernandez, E., Salaseviciene, A., & Ertbjerg, P. (2018). Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. In Meat Science (Vol. 143, pp. 104–113). Elsevier BV. https://doi.org/10.1016/j.meatsci.2018.04.032 DOI: https://doi.org/10.1016/j.meatsci.2018.04.032

Ma, Y.-J., Wang, X.-Y., Zhu, B.-W., Du, M., Dong, L., Dong, X.-P., & Xu, X.-B. (2022). Model studies on the formation of 2-vinylpyrazine and 2-vinyl-6-methyl pyrazine in Maillard-type reactions. In Food Chemistry (Vol. 374, p. 131652). Elsevier BV. https://doi.org/10.1016/j.foodchem.2021.131652 DOI: https://doi.org/10.1016/j.foodchem.2021.131652

Kaur, L., Hui, S. X., & Boland, M. (2020). Changes in Cathepsin Activity during Low-Temperature Storage and Sous Vide Processing of Beef Brisket. In Food Science of Animal Resources (Vol. 40, Issue 3, pp. 415–425). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2020.e21 DOI: https://doi.org/10.5851/kosfa.2020.e21

Voutila, L., Ruusunen, M., & Puolanne, E. (2008). Comparison of the thermal characteristics of connective tissue in loose structured and normal structured porcine M. semimembranosus. In Meat Science (Vol. 80, Issue 4, pp. 1024–1030). Elsevier BV. https://doi.org/10.1016/j.meatsci.2008.04.021 DOI: https://doi.org/10.1016/j.meatsci.2008.04.021

Leistner, L., & Gorris, L. G. M. (1995). Food preservation by hurdle technology. In Trends in Food Science & Technology (Vol. 6, Issue 2, pp. 41–46). Elsevier BV. https://doi.org/10.1016/s0924-2244(00)88941-4 DOI: https://doi.org/10.1016/S0924-2244(00)88941-4

Patrakova, I. S., Gurinovich, G. V., Myshalova, O. M., Seregin, S. A.  Patshina, M. V. (2021). Oxidation-reduction potential as an indicator of the stability of meat systems. In Polzunovskiy vеstnik (Issue 1, pp. 66‒73). Altai State Technical University. https://doi.org/10.25712/astu.2072-8921.2021.01.009 DOI: https://doi.org/10.25712/ASTU.2072-8921.2021.01.009

Cucci, P., N’Gatta, A. C. K., Sanguansuk, S., Lebert, A., & Audonnet, F. (2020). Relationship between Color and Redox Potential (Eh) in Beef Meat Juice. Validation on Beef Meat. In Applied Sciences (Vol. 10, Issue 9, p. 3164). MDPI AG. https://doi.org/10.3390/app10093164 DOI: https://doi.org/10.3390/app10093164

Estévez, M., Geraert, P.-A., Liu, R., Delgado, J., Mercier, Y., & Zhang, W. (2020). Sulphur amino acids, muscle redox status and meat quality: More than building blocks – Invited review. In Meat Science (Vol. 163, p. 108087). Elsevier BV. https://doi.org/10.1016/j.meatsci.2020.108087 DOI: https://doi.org/10.1016/j.meatsci.2020.108087

Rodel, W., & Scheuer, R. (1998). Das Redoxpotential Bei Fleisch und Fleischerzeuugnissen. In Fleischwirschaft (Vol. 78, Issue 12, pp. 1286–1289). Deutscher Fachverlag GmbH.

Rodel, W., & Scheuer, R. (2000) Das Redoxpotential von Fleisch und Fleischerzeuugnissen. In Fleischwirschaft (Vol. 80, Issue 5, pp. 90–93). Deutscher Fachverlag GmbH.

Krylova V. (2015) Redox potential as a hurdle factor in technology of meat and meat-and-plant canned foods. In Theory and Practice of Meat Processing (Vol. 1, pp.4-11). The Gorbatov’s All-Russian Meat Research Institute.

Krylova, V. B. (2016). Redox potential and dynamics of protein and fat destruction during storage of canned meat in pieces. In Theory and Practice of Meat Processing (Vol. 1, Issue 2, pp. 26–33). The Gorbatov’s All-Russian Meat Research Institute. https://doi.org/10.21323/2414-438x-2016-1-2-26-33 DOI: https://doi.org/10.21323/2414-438X-2016-1-2-26-33

Downloads

Published

2022-05-05

How to Cite

Kuznetsova, T., Krylova, V., & Gustova, T. (2022). The effect of storage conditions on the microstructure of sterilized canned meat. Potravinarstvo Slovak Journal of Food Sciences, 16, 233–243. https://doi.org/10.5219/1714