Ultrasound-assisted innovations in protein processing: review
DOI:
https://doi.org/10.5219/1978Keywords:
protein processing, ultrasound-assisted innovations, protein extraction, enzymatic hydrolysis, biopharmaceutical industryAbstract
The contemporary landscape of protein processing is witnessing a paradigm shift propelled by innovative technologies. This review unveils innovations in protein processing through the lens of an ultrasound-assisted approach. The focus was on the interplay between ultrasound waves and proteins during ultrasound extraction technology. The realm of protein extraction, where traditional methods face challenges and ultrasound emerges as a transformative force, was highlighted, as well as ultrasound's role in enhancing protein yield and quality in relationship to protein structure and function. Comparative analyses have showcased the remarkable advancements ushered in by ultrasound-assisted techniques, and this review also extends to enzymatic hydrolysis, where ultrasound catalyses reactions, unlocking new dimensions in the production of bioactive peptides and nutritionally enriched proteins. In the bio-industrial sectors, ultrasound facilitates protein refolding and revolutionises recombinant protein production, stability and bioavailability. Ultrasound has emerged as a catalyst for efficiency and bioactivity enhancement, defeating conventional limitations to the intricate optimisation strategies of refolding. This review envisages the advantages of ultrasound technology and its applications in the bio-industrial sector. The prospects of ultrasound-assisted protein processing are outlined, and roadmaps and processing techniques are offered.
Downloads
Metrics
References
Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., & Wang, F. (2023). Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. In Foods (Vol. 12, Issue 21, p. 4027). MDPI AG. https://doi.org/10.3390/foods12214027
GÜLDANE, M.J.B.S.J.o.A., Optimization of Ultrasound-Assisted Protein Extraction from Watermelon Seeds: Taguchi Approach. p. 1-2.
Suchintita Das, R., Zhu, X., Hannon, S., Mullins, E., Alves, S., Garcia-Vaquero, M., & Tiwari, B. K. (2023). Exploring Osborne fractionation and laboratory/pilot scale technologies (conventional extraction, ultrasound-assisted extraction, high-pressure processing and hydrodynamic cavitation) for protein extraction from faba bean (Vicia faba L.). In Innovative Food Science & Emerging Technologies (Vol. 89, p. 103487). Elsevier BV. https://doi.org/10.1016/j.ifset.2023.103487 DOI: https://doi.org/10.1016/j.ifset.2023.103487
Loch, J.I., et al. Structure determination of protein complexes based on joint NMR and X-ray crystallography data. 2016.
Harish, M., & Venkatraman, P. (2021). Evolution of biophysical tools for quantitative protein interactions and drug discovery. In K. Bose (Ed.), Emerging Topics in Life Sciences (Vol. 5, Issue 1, pp. 1–12). Portland Press Ltd. https://doi.org/10.1042/etls20200258 DOI: https://doi.org/10.1042/ETLS20200258
Lorente-Martínez, H., Agorreta, A., & San Mauro, D. (2022). Genomic Fishing and Data Processing for Molecular Evolution Research. In Methods and Protocols (Vol. 5, Issue 2, p. 26). MDPI AG. https://doi.org/10.3390/mps5020026 DOI: https://doi.org/10.3390/mps5020026
Alshehhi, M., Wu, G., Kangsadan, T., Chew, K. W., & Show, P. L. (2023). Ultrasound-Assisted Food Processing: A Mini Review of Mechanisms, Applications, and Challenges. In M. Sriariyanun, Y.-S. Cheng, D. Bhattacharyya, P. Venkatachalam, & M. P. Gundupalli (Eds.), E3S Web of Conferences (Vol. 428, p. 02011). EDP Sciences. https://doi.org/10.1051/e3sconf/202342802011 DOI: https://doi.org/10.1051/e3sconf/202342802011
Chen, J., Chai, J., Sun, X., Tao, Y., Chen, X., Zhou, G., & Xu, X. (2023). Unexpected variations in the effects of ultrasound-assisted myofibrillar protein processing under varying viscosity conditions. In Ultrasonics Sonochemistry (Vol. 99, p. 106553). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2023.106553 DOI: https://doi.org/10.1016/j.ultsonch.2023.106553
Zheng, X., Zou, B., Zhang, J., Cai, W., Na, X., Du, M., Zhu, B., & Wu, C. (2024). Recent advances of ultrasound-assisted technology on aquatic protein processing: Extraction, modification, and freezing/thawing-induced oxidation. In Trends in Food Science & Technology (Vol. 144, p. 104309). Elsevier BV. https://doi.org/10.1016/j.tifs.2023.104309 DOI: https://doi.org/10.1016/j.tifs.2023.104309
Abdulstar, A. R., Altemimi, A. B., & Al-Hilphy, A. R. (2023). Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. In Foods (Vol. 12, Issue 7, p. 1459). MDPI AG. https://doi.org/10.3390/foods12071459 DOI: https://doi.org/10.3390/foods12071459
Celton, C., Caton, S., Akoetey, W., Nicol, R., & Hosseinian, F. (2023). High-intensity, Low-frequency Ultrasound Treatment as Sustainable Strategy to Develop Innovative Biomaterials from Agri-food Byproducts and Wastes. In Sustainable Agriculture Research (Vol. 12, Issue 2, p. 45). Canadian Center of Science and Education. https://doi.org/10.5539/sar.v12n2p45 DOI: https://doi.org/10.5539/sar.v12n2p45
Brnčić, M., & Šic Žlabur, J. (2019). Impact of Ultrasound on Food Constituents. In Effect of Emerging Processing Methods on the Food Quality (pp. 69–94). Springer International Publishing. https://doi.org/10.1007/978-3-030-18191-8_3 DOI: https://doi.org/10.1007/978-3-030-18191-8_3
Lavilla, I., & Bendicho, C. (2017). Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds (pp. 291–316). Elsevier. https://doi.org/10.1016/b978-0-12-809380-1.00011-5 DOI: https://doi.org/10.1016/B978-0-12-809380-1.00011-5
Yamaguchi, T. (2021). Basic concept and clinical applications of quantitative ultrasound (QUS) technologies. In Journal of Medical Ultrasonics (Vol. 48, Issue 4, pp. 391–402). Springer Science and Business Media LLC. https://doi.org/10.1007/s10396-021-01139-6 DOI: https://doi.org/10.1007/s10396-021-01139-6
Duan, L., Yang, L., Jin, J., Yang, F., Liu, D., Hu, K., Wang, Q., Yue, Y., & Gu, N. (2020). Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. In Theranostics (Vol. 10, Issue 2, pp. 462–483). Ivyspring International Publisher. https://doi.org/10.7150/thno.37593 DOI: https://doi.org/10.7150/thno.37593
Goldstein, R. V., & Kuznetsov, S. V. (2013). Surface acoustic waves in the testing of layered media. The waves’ sensitivity to variations in the properties of the individual layers. In Journal of Applied Mathematics and Mechanics (Vol. 77, Issue 1, pp. 51–56). Elsevier BV. https://doi.org/10.1016/j.jappmathmech.2013.04.007 DOI: https://doi.org/10.1016/j.jappmathmech.2013.04.007
Joshi, S. G., Zaĭtsev, B. D., & Kuznetsova, I. E. (2001). SH Acoustic Waves in a Lithium Niobate Plate and the Effect of Electrical Boundary Conditions on Their Properties. In Acoustical Physics (Vol. 47, Issue 3, pp. 282–285). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03353580 DOI: https://doi.org/10.1007/BF03353580
Bandhu, L., & Nash, G. R. (2015). Controlling the properties of surface acoustic waves using graphene. In Nano Research (Vol. 9, Issue 3, pp. 685–691). Springer Science and Business Media LLC. https://doi.org/10.1007/s12274-015-0947-z DOI: https://doi.org/10.1007/s12274-015-0947-z
Kuznetsova, I. E., Zaitsev, B. D., Polyakov, P. V., & Mysenko, M. B. (1998). External electric field effect on the properties of Bleustein-Gulyaev surface acoustic waves in lithium niobate and strontium titanate. In Ultrasonics (Vol. 36, Issues 1–5, pp. 431–434). Elsevier BV. https://doi.org/10.1016/s0041-624x(97)00049-8 DOI: https://doi.org/10.1016/S0041-624X(97)00049-8
Kuznetsova, I., Nedospasov, I., Zaitsev, B., & Kuznetsova, A. (2015). Influence of liquid on properties of backward acoustic waves in piezoelectric plates. In 2015 IEEE International Ultrasonics Symposium (IUS). 2015 IEEE International Ultrasonics Symposium (IUS). IEEE. https://doi.org/10.1109/ultsym.2015.0351 DOI: https://doi.org/10.1109/ULTSYM.2015.0351
Yamamoto, T., T. Furukawa, and I. Komura. Property study on emats with visualization of ultrasonic propagation. 2016.
Petrescu, F. I. T. (2015). Improving Medical Imaging and Blood Flow Measurement by using a New Doppler Effect Relationship. In American Journal of Engineering and Applied Sciences (Vol. 8, Issue 4, pp. 582–588). Science Publications. https://doi.org/10.3844/ajeassp.2015.582.588 DOI: https://doi.org/10.3844/ajeassp.2015.582.588
Pesaresi, L., Fantetti, A., Cegla, F., Salles, L., & Schwingshackl, C. W. (2019). On the Use of Ultrasound Waves to Monitor the Local Dynamics of Friction Joints. In Experimental Mechanics (Vol. 60, Issue 1, pp. 129–141). Springer Science and Business Media LLC. https://doi.org/10.1007/s11340-019-00550-y DOI: https://doi.org/10.1007/s11340-019-00550-y
Gao, Z., & Kohyama, K. (2014). Ultrasound Pulsed Wave Doppler Imaging of the Esophagus Illustrates the Effects of Water Volume on Bolus Kinematics. In Journal of Texture Studies (Vol. 45, Issue 5, pp. 335–343). Wiley. https://doi.org/10.1111/jtxs.12077 DOI: https://doi.org/10.1111/jtxs.12077
Wang, L., Li, Y.-J., Lin, A., Choe, Y., Gross, M. E., & Kim, E. S. (2013). A Self-Focusing Acoustic Transducer That Exploits Cytoskeletal Differences for Selective Cytolysis of Cancer Cells. In Journal of Microelectromechanical Systems (Vol. 22, Issue 3, pp. 542–552). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/jmems.2012.2229696 DOI: https://doi.org/10.1109/JMEMS.2012.2229696
Mostafa, J., Ali, Y., Zohre, R., & Samaneh, R. (2015). Electromagnetic Fields and Ultrasound Waves in Wound Treatment: A Comparative Review of Therapeutic Outcomes. In Biosciences Biotechnology Research Asia (Vol. 12, Issue SEMAR, pp. 185–195). Oriental Scientific Publishing Company. https://doi.org/10.13005/bbra/1622 DOI: https://doi.org/10.13005/bbra/1622
Nagamani, M., & Chilvers, R. (2010). Ultrasonography and diagnosis of polycystic ovary syndrome. In Ultrasonography in Reproductive Medicine and Infertility (pp. 75–80). Cambridge University Press. https://doi.org/10.1017/cbo9780511776854.011 DOI: https://doi.org/10.1017/CBO9780511776854.011
Abrunhosa, V. M., Mermelstein, C. S., Costa, M. L., & Costa-Felix, R. P. B. (2011). Biological responsein vitroof skeletal muscle cells treated with different intensity continuous and pulsed ultrasound fields. In Journal of Physics: Conference Series (Vol. 279, p. 012022). IOP Publishing. https://doi.org/10.1088/1742-6596/279/1/012022 DOI: https://doi.org/10.1088/1742-6596/279/1/012022
Mehta, N., S, Jeyapriya., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., Pathak, D., Kaka, U., & Sazili, A. Q. (2022). Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. In Foods (Vol. 11, Issue 19, p. 2973). MDPI AG. https://doi.org/10.3390/foods11192973 DOI: https://doi.org/10.3390/foods11192973
Biparva, P., Mirzapour-Kouhdasht, A., Valizadeh, S., & Garcia-Vaquero, M. (2023). Advanced Processing of Giant Kelp (Macrocystis pyrifera) for Protein Extraction and Generation of Hydrolysates with Anti-Hypertensive and Antioxidant Activities In Vitro and the Thermal/Ionic Stability of These Compounds. In Antioxidants (Vol. 12, Issue 3, p. 775). MDPI AG. https://doi.org/10.3390/antiox12030775 DOI: https://doi.org/10.3390/antiox12030775
Zhou, Q., Wang, H., Zhu, K., Zhu, L., Zhou, S., Peng, J., & Lu, X. (2017). Effects of ultrasound irradiation on enzymatic hydrolysis of protein and application for the determination of tetracyclines in complex matrices. In Drug Testing and Analysis (Vol. 9, Issue 10, pp. 1586–1593). Wiley. https://doi.org/10.1002/dta.2181 DOI: https://doi.org/10.1002/dta.2181
Kangsanant, S., Murkovic, M., & Thongraung, C. (2014). Antioxidant and nitric oxide inhibitory activities of tilapia reochromis niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic‐assisted enzymatic hydrolysis. In International Journal of Food Science & Technology (Vol. 49, Issue 8, pp. 1932–1938). Wiley. https://doi.org/10.1111/ijfs.12551 DOI: https://doi.org/10.1111/ijfs.12551
Liu, J., Song, G., Zhou, L., Yuan, Y., Wang, D., Yuan, T., Li, L., Yuan, H., Xiao, G., & Gong, J. (2023). Recent advances in the effect of ultrasound on the binding of protein−polyphenol complexes in foodstuff. In Food Frontiers (Vol. 4, Issue 2, pp. 721–732). Wiley. https://doi.org/10.1002/fft2.221 DOI: https://doi.org/10.1002/fft2.221
Price, S. E. N., Hansen, R., & Gjennestad, M. Aa. (2023). A volume-averaged model for acoustic streaming induced by focused ultrasound in soft porous media. In The Journal of the Acoustical Society of America (Vol. 154, Issue 1, pp. 334–345). Acoustical Society of America (ASA). https://doi.org/10.1121/10.0020146 DOI: https://doi.org/10.1121/10.0020146
Strom-Jensen, P. R., & Dunn, F. (1984). Ultrasonic absorption by solvent–solute interactions and proton transfer in aqueous solutions of peptides and small proteins. In The Journal of the Acoustical Society of America (Vol. 75, Issue 3, pp. 960–966). Acoustical Society of America (ASA). https://doi.org/10.1121/1.390561 DOI: https://doi.org/10.1121/1.390561
Yolandani, Ma, H., Li, Y., Liu, D., Zhou, H., Liu, X., Wan, Y., & Zhao, X. (2023). Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. In Ultrasonics Sonochemistry (Vol. 95, p. 106414). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2023.106414 DOI: https://doi.org/10.1016/j.ultsonch.2023.106414
Lindsay Rojas, M., Hellmeister Trevilin, J., & Augusto, P. E. D. (2016). The ultrasound technology for modifying enzyme activity. In Scientia Agropecuaria (Vol. 07, Issue 02, pp. 145–150). Universidad Nacional de Trujillo. https://doi.org/10.17268/sci.agropecu.2016.02.07 DOI: https://doi.org/10.17268/sci.agropecu.2016.02.07
Wang, C., Zhao, R., Liu, J., & Wang, C. (2022). Towards understanding the interaction between ultrasound‐pretreated β‐lactoglobulin monomer with resveratrol. In Luminescence (Vol. 38, Issue 2, pp. 116–126). Wiley. https://doi.org/10.1002/bio.4427 DOI: https://doi.org/10.1002/bio.4427
Anaya-Esparza, L. M., Aurora-Vigo, E. F., Villagrán, Z., Rodríguez-Lafitte, E., Ruvalcaba-Gómez, J. M., Solano-Cornejo, M. Á., Zamora-Gasga, V. M., Montalvo-González, E., Gómez-Rodríguez, H., Aceves-Aldrete, C. E., & González-Silva, N. (2023). Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. In Molecules (Vol. 28, Issue 23, p. 7752). MDPI AG. https://doi.org/10.3390/molecules28237752 DOI: https://doi.org/10.3390/molecules28237752
Liu, D., Di, H., Guo, Y., Betchem, G., & Ma, H. (2022). Multi-mode S-type ultrasound-assisted protein extraction from walnut dregs and in situ real-time process monitoring. In Ultrasonics Sonochemistry (Vol. 89, p. 106116). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2022.106116
Liu, D., Di, H., Guo, Y., Betchem, G., & Ma, H. (2022). Multi-mode S-type ultrasound-assisted protein extraction from walnut dregs and in situ real-time process monitoring. In Ultrasonics Sonochemistry (Vol. 89, p. 106116). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2022.106116 DOI: https://doi.org/10.1016/j.ultsonch.2022.106116
Ashok N., A., & Sontakke, M. (2023). Comparative analysis of extraction methods, proximate composition, and physicochemical and functional properties of fruit seed proteins: A comprehensive review. In eFood (Vol. 4, Issue 6). Wiley. https://doi.org/10.1002/efd2.117 DOI: https://doi.org/10.1002/efd2.117
Sánchez, J., Loaña, J., Agualongo, M., & Espinoza, K. (2020). Cultivation techniques and methods of extraction of fatty acids based on microalgae for the benefit of humanity. In Agroindustrial Science (Vol. 10, Issue 3, pp. 319–328). Universidad Nacional de Trujillo. https://doi.org/10.17268/agroind.sci.2020.03.15 DOI: https://doi.org/10.17268/agroind.sci.2020.03.15
Jia, F., Liu, X., Gong, Z., Cui, W., Wang, Y., & Wang, W. (2020). Extraction, modification, and property characterization of dietary fiber from Agrocybe cylindracea. In Food Science & Nutrition (Vol. 8, Issue 11, pp. 6131–6143). Wiley. https://doi.org/10.1002/fsn3.1905 DOI: https://doi.org/10.1002/fsn3.1905
Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., & Wang, F. (2023). Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. In Foods (Vol. 12, Issue 21, p. 4027). MDPI AG. https://doi.org/10.3390/foods12214027 DOI: https://doi.org/10.3390/foods12214027
Alonso-Riaño, P., Sanz Diez, M. T., Blanco, B., Beltrán, S., Trigueros, E., & Benito-Román, O. (2020). Water Ultrasound-Assisted Extraction of Polyphenol Compounds from Brewer’s Spent Grain: Kinetic Study, Extract Characterization, and Concentration. In Antioxidants (Vol. 9, Issue 3, p. 265). MDPI AG. https://doi.org/10.3390/antiox9030265 DOI: https://doi.org/10.3390/antiox9030265
Sengkhamparn, N., Lasunon, P., & Tettawong, P. (2019). Effect of Ultrasound Assisted Extraction and Acid Type Extractant on Pectin from Industrial Tomato Waste. In Chiang Mai University Journal of Natural Sciences (Vol. 18, Issue 2). Chiang Mai University. https://doi.org/10.12982/cmujns.2019.0016 DOI: https://doi.org/10.12982/CMUJNS.2019.0016
Fatima, K., Imran, M., Ahmad, M. H., Khan, M. K., Khalid, W., AL-Farga, A., Alansari, W. S., Shamlan, G., & Eskandrani, A. A. (2023). Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties. In Molecules (Vol. 28, Issue 6, p. 2554). MDPI AG. https://doi.org/10.3390/molecules28062554 DOI: https://doi.org/10.3390/molecules28062554
Sert, D., Rohm, H., & Struck, S. (2022). Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. In Foods (Vol. 11, Issue 24, p. 4029). MDPI AG. https://doi.org/10.3390/foods11244029 DOI: https://doi.org/10.3390/foods11244029
Zhao, Y., Yan, M., Xue, S., Zhang, T., & Shen, X. (2022). Influence of ultrasound and enzymatic cross-linking on freeze-thaw stability and release properties of whey protein isolate hydrogel. In Journal of Dairy Science (Vol. 105, Issue 9, pp. 7253–7265). American Dairy Science Association. https://doi.org/10.3168/jds.2021-21605 DOI: https://doi.org/10.3168/jds.2021-21605
Rezvankhah, A., Yarmand, M. S., & Ghanbarzadeh, B. (2022). The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. In Journal of Food Measurement and Characterization (Vol. 16, Issue 5, pp. 3743–3759). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-022-01478-z DOI: https://doi.org/10.1007/s11694-022-01478-z
Wayu, M. B., Pannell, M. J., & Leopold, M. C. (2016). Layered Xerogel Films Incorporating Monolayer‐Protected Cluster Networks on Platinum‐Black‐Modified Electrodes for Enhanced Sensitivity in First‐Generation Uric Acid Biosensing. In ChemElectroChem (Vol. 3, Issue 8, pp. 1245–1252). Wiley. https://doi.org/10.1002/celc.201600164 DOI: https://doi.org/10.1002/celc.201600164
Wang, L., Zhang, X., You, Z., Yang, Z., Guo, M., Guo, J., Liu, H., Zhang, X., Wang, Z., Wang, A., Lv, Y., Zhang, J., Yu, X., Liu, J., & Chen, C. (2023). A Molybdenum Disulfide Nanozyme with Charge‐Enhanced Activity for Ultrasound‐Mediated Cascade‐Catalytic Tumor Ferroptosis. In Angewandte Chemie International Edition (Vol. 62, Issue 11). Wiley. https://doi.org/10.1002/anie.202217448 DOI: https://doi.org/10.1002/anie.202217448
Kazlauskaite, J. A., Ivanauskas, L., & Bernatoniene, J. (2021). Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium pratensis L. Extract. In Pharmaceutics (Vol. 13, Issue 5, p. 620). MDPI AG. https://doi.org/10.3390/pharmaceutics13050620 DOI: https://doi.org/10.3390/pharmaceutics13050620
Anand, A., Kumar, K., Khaire, K. C., Roy, K., & Moholkar, V. S. (2023). Ultrasound-Assisted Hydrolysis of Food Waste using Glucoamylase: Statistical Optimization and Mechanistic Analysis with Molecular Simulations. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.12.14.571620 DOI: https://doi.org/10.1101/2023.12.14.571620
Zhang, Z., Gao, P., Jiang, Q., Zhang, Z., Zhang, X., Yang, F., Yu, P., Liu, S., & Wenshui, X. (2023). Optimization of ultrasound-assisted enzymatic hydrolysis of channel catfish (Ictalurus punctatus) frames yield high-calcium and high-amino acid hydrolysates. In International Journal of Food Properties (Vol. 26, Issue 2, pp. 3393–3406). Informa UK Limited. https://doi.org/10.1080/10942912.2023.2281886 DOI: https://doi.org/10.1080/10942912.2023.2281886
Pedrosa, N. de A., de Andrade, C. J., Petrus, J. C. C., & Monteiro, A. R. (2022). Sequential Hydrolysis of Chicken Feathers Composed of Ultrasound and Enzymatic Steps: An Enhanced Protein Source with Bioactive Peptides. In Biomass (Vol. 2, Issue 4, pp. 237–249). MDPI AG. https://doi.org/10.3390/biomass2040016 DOI: https://doi.org/10.3390/biomass2040016
Salman Mohammad, S., Barbosa, M. I. M. J., Gamallo, O., & Barbosa Junior, J. L. (2023). The Production of Bioactive Peptides by Optimization of Enzymatic Hydrolysis Process of Protein from Tilapia Fish Skin Waste (Oreochromis niloticus, Linnaeus 1758) using Alcalase 2.4.L. In Current Bioactive Compounds (Vol. 19, Issue 10). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573407219666230502154801 DOI: https://doi.org/10.2174/1573407219666230502154801
Tawalbeh, D., Ahmad, W. A. N. W., & Sarbon, N. M. (2022). Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. In Food Reviews International (Vol. 39, Issue 8, pp. 5423–5445). Informa UK Limited. https://doi.org/10.1080/87559129.2022.2069258 DOI: https://doi.org/10.1080/87559129.2022.2069258
Wen, Q., Zhang, L., Zhao, F., Chen, Y., Su, Y., Zhang, X., Chen, P., & Zheng, T. (2023). Production Technology and Functionality of Bioactive Peptides. In Current Pharmaceutical Design (Vol. 29, Issue 9, pp. 652–674). Bentham Science Publishers Ltd. https://doi.org/10.2174/1381612829666230201121353 DOI: https://doi.org/10.2174/1381612829666230201121353
Sun, X., Yu, Y., Saleh, A. S. M., Yang, X., Ma, J., Gao, Z., Li, W., Wang, Z., & Zhang, D. (2023). Structural changes induced by ultrasound improve the ability of the myofibrillar protein to bind flavor compounds from spices. In Ultrasonics Sonochemistry (Vol. 98, p. 106510). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2023.106510 DOI: https://doi.org/10.1016/j.ultsonch.2023.106510
Kozell, A., Solomonov, A., Gaidarov, R., Benyamin, D., Rosenhek-Goldian, I., Greenblatt, H. M., Levy, Y., Amir, A., Raviv, U., & Shimanovich, U. (2023). Sound-mediated nucleation and growth of amyloid fibrils. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.09.16.558053
Zhao, S., Song, Y., Xu, L., Hu, H., Wang, J., Huang, F., & Shi, L. (2023). Self‐Assembly Nanochaperone with Tunable Hydrophilic–Hydrophobic Surface for Controlled Protein Refolding. In Macromolecular Bioscience (Vol. 23, Issue 11). Wiley. https://doi.org/10.1002/mabi.202300205 DOI: https://doi.org/10.1002/mabi.202300205
Herrmann, T., Torres, R., Salgado, E. N., Berciu, C., Stoddard, D., Nicastro, D., Jenni, S., & Harrison, S. C. (2021). Functional refolding of the penetration protein on a non-enveloped virus. In Nature (Vol. 590, Issue 7847, pp. 666–670). Springer Science and Business Media LLC. https://doi.org/10.1038/s41586-020-03124-4 DOI: https://doi.org/10.1038/s41586-020-03124-4
Michaux, C., Roussel, G., Lopes-Rodrigues, M., Matagne, A., & Perpète, E. A. (2016). Unravelling the mechanisms of a protein refolding process based on the association of detergents and co-solvents. In Journal of Peptide Science (Vol. 22, Issue 7, pp. 485–491). Wiley. https://doi.org/10.1002/psc.2893 DOI: https://doi.org/10.1002/psc.2893
Żwirowski, S., Kłosowska, A., Obuchowski, I., Nillegoda, N. B., Piróg, A., Ziętkiewicz, S., Bukau, B., Mogk, A., & Liberek, K. (2017). Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. In The EMBO Journal (Vol. 36, Issue 6, pp. 783–796). Springer Science and Business Media LLC. https://doi.org/10.15252/embj.201593378
Sarker, A., Rathore, A. S., & Gupta, R. D. (2019). Evaluation of scFv protein recovery from E. coli by in vitro refolding and mild solubilization process. In Microbial Cell Factories (Vol. 18, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12934-019-1053-9 DOI: https://doi.org/10.1186/s12934-019-1053-9
Yao, S., Li, W., Wu, Y., Martin, G., & Ashokkumar, M. (2023). The Impact of High-Intensity Ultrasound-Assisted Extraction on the Structural and Functional Properties of Hempseed Protein Isolate (HPI). In Foods (Vol. 12, Issue 2, p. 348). MDPI AG. https://doi.org/10.3390/foods12020348 DOI: https://doi.org/10.3390/foods12020348
Enoki, S., Saeki, K., Maki, K., & Kuwajima, K. (2004). Acid Denaturation and Refolding of Green Fluorescent Protein. In Biochemistry (Vol. 43, Issue 44, pp. 14238–14248). American Chemical Society (ACS). https://doi.org/10.1021/bi048733+ DOI: https://doi.org/10.1021/bi048733+
Heim, B., Handrick, R., Hartmann, M. D., & Kiefer, H. (2021). Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies. In S. D’Auria (Ed.), PLOS ONE (Vol. 16, Issue 2, p. e0247689). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0247689 DOI: https://doi.org/10.1371/journal.pone.0247689
Jensen, P.K. Monitoring protein refolding using diverse separation and spectroscopy techniques. 1997.
Upadhyay, A. K., Singh, A., Mukherjee, K. J., & Panda, A. K. (2014). Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. In Frontiers in Microbiology (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fmicb.2014.00486 DOI: https://doi.org/10.3389/fmicb.2014.00486
Moghadam, M., et al., Refolding process of cysteine-rich proteins:Chitinase as a model. Rep Biochem Mol Biol, (Vol. 4, Issue 1, pp. 19-24).
Kolivand, S., Nazari, M., Modarressi, M. H., Najafabadi, M. R. H., Hemati, A., Ghafouri-Fard, S., & Motevaseli, E. (2020). Optimized protocol for soluble prokaryotic expression, purification and refolding of the human inhibin α subunit, a cysteine rich peptide chain. In Human Antibodies (Vol. 28, Issue 2, pp. 131–139). IOS Press. https://doi.org/10.3233/hab-190399 DOI: https://doi.org/10.3233/HAB-190399
Enkhtuya, B., Ren, Y., Hu, Y., Chen, Y., Hu, J., Yu, X., Wang, W., & Fan, J. (2021). Selection of tobacco etch virus protease variants with enhanced oxidative stability for tag-removal in refolding of two disulfide-rich proteins. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-174410/v1 DOI: https://doi.org/10.21203/rs.3.rs-174410/v1
Ma, F.-H., An, Y., Wang, J., Song, Y., Liu, Y., & Shi, L. (2017). Synthetic Nanochaperones Facilitate Refolding of Denatured Proteins. In ACS Nano (Vol. 11, Issue 10, pp. 10549–10557). American Chemical Society (ACS). https://doi.org/10.1021/acsnano.7b05947 DOI: https://doi.org/10.1021/acsnano.7b05947
Yoo, H., Nagornyak, E., Das, R., Wexler, A. D., & Pollack, G. H. (2014). Contraction-Induced Changes in Hydrogen Bonding of Muscle Hydration Water. In The Journal of Physical Chemistry Letters (Vol. 5, Issue 6, pp. 947–952). American Chemical Society (ACS). https://doi.org/10.1021/jz5000879 DOI: https://doi.org/10.1021/jz5000879
Żwirowski, S., Kłosowska, A., Obuchowski, I., Nillegoda, N. B., Piróg, A., Ziętkiewicz, S., Bukau, B., Mogk, A., & Liberek, K. (2017). Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. In The EMBO Journal (Vol. 36, Issue 6, pp. 783–796). Springer Science and Business Media LLC. https://doi.org/10.15252/embj.201593378 DOI: https://doi.org/10.15252/embj.201593378
Obuchowski, I., Piróg, A., Stolarska, M., Tomiczek, B., & Liberek, K. (2019). Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates. In D. A. Garsin (Ed.), PLOS Genetics (Vol. 15, Issue 10, p. e1008479). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pgen.1008479 DOI: https://doi.org/10.1371/journal.pgen.1008479
Kozell, A., Solomonov, A., Gaidarov, R., Benyamin, D., Rosenhek-Goldian, I., Greenblatt, H. M., Levy, Y., Amir, A., Raviv, U., & Shimanovich, U. (2023). Sound-mediated nucleation and growth of amyloid fibrils. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.09.16.558053 DOI: https://doi.org/10.1101/2023.09.16.558053
Fitzpatrick, A. W. P., Park, S. T., & Zewail, A. H. (2013). Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. In Proceedings of the National Academy of Sciences (Vol. 110, Issue 27, pp. 10976–10981). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1309690110 DOI: https://doi.org/10.1073/pnas.1309690110
Balbirnie, M., Grothe, R., & Eisenberg, D. S. (2001). An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. In Proceedings of the National Academy of Sciences (Vol. 98, Issue 5, pp. 2375–2380). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.041617698 DOI: https://doi.org/10.1073/pnas.041617698
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.