Advancements in nano bio sensors for food quality and safety assurance – a review
DOI:
https://doi.org/10.5219/1903Keywords:
nano-biosensors, food safety, food quality, contaminants, pathogens, nanomaterialsAbstract
Nano-biosensors are rising as a promising technology for ensuring the protection and high-quality of meals merchandise. They offer excessive sensitivity, selectivity, and speedy reaction, making them ideal for detecting contaminants, pathogens, and first-rate signs in meals samples. This up to date evaluate affords a complete evaluation of recent improvements in nano-biosensor technology for meals great and safety warranty. The evaluate covers the essential standards and kinds of nano-biosensors typically utilized in meals evaluation, exploring various nanomaterials and their unique homes and sensing talents. It also discusses mixing nanomaterials with biological reputation elements, antibodies, enzymes, and DNA aptamers to enhance sensor performance. The software of nano-biosensors in detecting chemical contaminants, which includes pesticides, heavy metals, and mycotoxins, is drastically protected. Nanomaterials allow ultrasensitive detection of these contaminants, even at trace stages, ensuring the protection and compliance of meal products. The review also explores the usage of nano-biosensors for rapid identification and quantification of foodborne pathogens, such as microorganisms, viruses, and parasites, allowing on-web page pathogen detection and timely interventions to prevent outbreaks. Additionally, the review highlights the tracking of meals satisfactory signs of using nano-biosensors, including freshness, spoilage, and dietary composition. Accurate assessment of those parameters offers treasured information to manage and predict shelf-life. Overall, the advancements in nano-biosensor generation maintain high-quality promise for ensuring the integrity of meals products, defensive public fitness, and assembly regulatory standards.
Downloads
Metrics
References
Kumar, V., Raghuwanshi, S. K., & Kumar, S. (2022). Advances in Nanocomposite Thin-Film-Based Optical Fiber Sensors for Environmental Health Monitoring—A Review. In IEEE Sensors Journal (Vol. 22, Issue 15, pp. 14696–14707). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/jsen.2022.3185004 DOI: https://doi.org/10.1109/JSEN.2022.3185004
Taleski, V., Bosnakovski, D., Zdravkovska, M., Nasov, I., & Trajkovska-Petkoska, A. (2015). Applications of nanotechnology and nanomicrobiology in food safety and health science. In Proceedings of the 2nd National Food Conference with International Participation, Sofia, Bulgaria. New Bulgarian University.
Kumar, D., Farrukh, Md., & Faisal, N. (2021). Nanocomposites in the Food Packaging Industry. In Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security (pp. 122–146). IGI Global. https://doi.org/10.4018/978-1-7998-5354-1.ch006 DOI: https://doi.org/10.4018/978-1-7998-5354-1.ch006
Tekmen, D. C. (2017). Nanofibers in Food Packaging. In WEB Journal 107.
Hribar, J., Pozrl, T., & Vidrih, R. (2018). Novel technologies in fruit and vegetable processing. In Croatian Journal of Food Science and Technology (Vol. 10, Issue 1, pp. 112–117). Faculty of Food Technology Osijek. https://doi.org/10.17508/cjfst.2018.10.1.14 DOI: https://doi.org/10.17508/CJFST.2018.10.1.14
Kaur, G., Bhari, R., & Kumar, K. (2023). Nanobiosensors and their role in detection of adulterants and contaminants in food products. In Critical Reviews in Biotechnology (pp. 1–15). Informa UK Limited. https://doi.org/10.1080/07388551.2023.2175196 DOI: https://doi.org/10.1080/07388551.2023.2175196
Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, Md. M., & Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. In Heliyon (Vol. 8, Issue 11, p. e11795). Elsevier BV. https://doi.org/10.1016/j.heliyon.2022.e11795 DOI: https://doi.org/10.1016/j.heliyon.2022.e11795
Alkilany, A. M., Lohse, S. E., & Murphy, C. J. (2012). The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface. In Accounts of Chemical Research (Vol. 46, Issue 3, pp. 650–661). American Chemical Society (ACS). https://doi.org/10.1021/ar300015b DOI: https://doi.org/10.1021/ar300015b
Wang, J., Zhou, Y., & Jiang, L. (2021). Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. In ACS Nano (Vol. 15, Issue 12, pp. 18974–19013). American Chemical Society (ACS). https://doi.org/10.1021/acsnano.1c08582 DOI: https://doi.org/10.1021/acsnano.1c08582
Adam, T., Dhahi, T. S., Gopinath, S. C. B., & Hashim, U. (2021). Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems. In Critical Reviews in Analytical Chemistry (Vol. 52, Issue 8, pp. 1913–1929). Informa UK Limited. https://doi.org/10.1080/10408347.2021.1925523 DOI: https://doi.org/10.1080/10408347.2021.1925523
Rai, V. R., & Bai, J. A. (2018). Nanotechnology Applications in the Food Industry (V. R. Rai & J. A. Bai, Eds.). CRC Press. https://doi.org/10.1201/9780429488870 DOI: https://doi.org/10.1201/9780429488870
Johnson, M. S., Sajeev, S., & Nair, R. S. (2021). Role of Nanosensors in agriculture. In 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). IEEE. https://doi.org/10.1109/iccike51210.2021.9410709 DOI: https://doi.org/10.1109/ICCIKE51210.2021.9410709
Bratovcic, A., Odobasic, A., Catic, S., & Sestan, I. (2015). Application of polymer nanocomposite materials in food packaging. In Croatian Journal of Food Science and Technology (Vol. 7, Issue 2, pp. 86–94). Faculty of Food Technology Osijek. https://doi.org/10.17508/cjfst.2015.7.2.06 DOI: https://doi.org/10.17508/CJFST.2015.7.2.06
Kumar, N., Kaur, P., & Bhatia, S. (2017). Advances in bio-nanocomposite materials for food packaging: a review. In Nutrition &a Food Science (Vol. 47, Issue 4, pp. 591–606). Emerald. https://doi.org/10.1108/nfs-11-2016-0176 DOI: https://doi.org/10.1108/NFS-11-2016-0176
El-Sayed, S. M., & Youssef, A. M. (2023). Eco-friendly biodegradable nanocomposite materials and their recent use in food packaging applications: a review. In Sustainable Food Technology (Vol. 1, Issue 2, pp. 215–227). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d2fb00021k DOI: https://doi.org/10.1039/D2FB00021K
Thekkethil, A. J., Nair, R., & Madhavan, A. (2019). The Role Of Nanotechnology In Food Safety:A Review. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). IEEE. https://doi.org/10.1109/iccike47802.2019.9004412 DOI: https://doi.org/10.1109/ICCIKE47802.2019.9004412
Stavrov, V., Stavreva, G., Tomerov, E., Villani, M., Kotsev, S., & Kostadinov, K. (2021). Piezoresistive cantilevers’ platform for bio-chemical sensing. In 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE. https://doi.org/10.1109/3m-nano49087.2021.9599795 DOI: https://doi.org/10.1109/3M-NANO49087.2021.9599795
Kato, L. S., & Conte-Junior, C. A. (2021). Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. In Polymers (Vol. 13, Issue 13, p. 2077). MDPI AG. https://doi.org/10.3390/polym13132077 DOI: https://doi.org/10.3390/polym13132077
Dr. T., K., A, A., V, K., M, K., & K, K. (2023). Food Quality Monitoring System Based On IoT. In International Journal of Innovative Research in Engineering (pp. 375–378). Fifth Dimension Research Publications. https://doi.org/10.59256/ijire.20230403103 DOI: https://doi.org/10.59256/ijire.20230403103
Benefo, E. O., Karanth, S., & Pradhan, A. K. (2022). Applications of advanced data analytic techniques in food safety and risk assessment. In Current Opinion in Food Science (Vol. 48, p. 100937). Elsevier BV. https://doi.org/10.1016/j.cofs.2022.100937 DOI: https://doi.org/10.1016/j.cofs.2022.100937
Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. In ACS Sensors (Vol. 4, Issue 4, pp. 808–821). American Chemical Society (ACS). https://doi.org/10.1021/acssensors.9b00440
Mustafa, F., & Andreescu, S. (2018). Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. In Foods (Vol. 7, Issue 10, p. 168). MDPI AG. https://doi.org/10.3390/foods7100168 DOI: https://doi.org/10.3390/foods7100168
Hassan, R. Y. A. (2022). Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. In Sensors (Vol. 22, Issue 19, p. 7539). MDPI AG. https://doi.org/10.3390/s22197539 DOI: https://doi.org/10.3390/s22197539
Rahman, B. M. A., Viphavakit, C., Chitaree, R., Ghosh, S., Pathak, A. K., Verma, S., & Sakda, N. (2022). Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. In Biosensors (Vol. 12, Issue 1, p. 42). MDPI AG. https://doi.org/10.3390/bios12010042 DOI: https://doi.org/10.3390/bios12010042
Aquino, A., Paschoalin, V. M. F., Tessaro, L. L. G., Raymundo-Pereira, P. A., & Conte-Junior, C. A. (2022). Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. In Journal of Pharmaceutical and Biomedical Analysis (Vol. 211, p. 114608). Elsevier BV. https://doi.org/10.1016/j.jpba.2022.114608 DOI: https://doi.org/10.1016/j.jpba.2022.114608
Steffens, C., Leite, F. L., Bueno, C. C., Manzoli, A., & Herrmann, P. S. D. P. (2012). Atomic Force Microscopy as a Tool Applied to Nano/Biosensors. In Sensors (Vol. 12, Issue 6, pp. 8278–8300). MDPI AG. https://doi.org/10.3390/s120608278 DOI: https://doi.org/10.3390/s120608278
Thanaraj, M., Rathanasamy, R., & Jaganathan, S. K. (2021). Advancements in Ultra-Sensitive Nanoelectronic Biosensors for Medical Applications. In Current Nanoscience (Vol. 17, Issue 5, pp. 679–693). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573413717666210121141858 DOI: https://doi.org/10.2174/1573413717666210121141858
Chawla, P. A., Sharma, D., Teli, G., Gupta, K., Bansal, G., & Gupta, G. D. (2022). Nano-biosensors from Agriculture to Nextgen Diagnostic Tools. In Current Nanomaterials (Vol. 7, Issue 2, pp. 110–138). Bentham Science Publishers Ltd. https://doi.org/10.2174/2405461507666220131104843 DOI: https://doi.org/10.2174/2405461507666220131104843
Zhang, X., Shi, Y., Chen, G., Wu, D., Wu, Y., & Li, G. (2022). CRISPR/Cas Systems‐Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. In Small Methods (Vol. 6, Issue 10, p. 2200794). Wiley. https://doi.org/10.1002/smtd.202200794 DOI: https://doi.org/10.1002/smtd.202200794
Sharma, A., Ranjit, R., Pratibha, Kumar, N., Kumar, M., & Giri, B. S. (2023). Nanoparticles based nanosensors: Principles and their applications in active packaging for food quality and safety detection. In Biochemical Engineering Journal (Vol. 193, p. 108861). Elsevier BV. https://doi.org/10.1016/j.bej.2023.108861 DOI: https://doi.org/10.1016/j.bej.2023.108861
Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. In Food Packaging and Shelf Life (Vol. 30, p. 100745). Elsevier BV. https://doi.org/10.1016/j.fpsl.2021.100745 DOI: https://doi.org/10.1016/j.fpsl.2021.100745
Chen, S., Hwang, M. T., Wang, J., Ganguli, A., Park, I., Kim, Y., Valera, E., Nam, S., Aluru, N. R., Van Der Zande, A. M., & Bashir, R. (2022). Advances in Electronic Nano-biosensors and New Frontiers in Bioengineering. In 2022 International Electron Devices Meeting (IEDM). 2022 IEEE International Electron Devices Meeting (IEDM). IEEE. https://doi.org/10.1109/iedm45625.2022.10019512 DOI: https://doi.org/10.1109/IEDM45625.2022.10019512
Wasilewska, A., Bielicka, M., Klekotka, U., & Kalska-Szostko, B. (2023). Nanoparticle applications in food – a review. In Food & Function (Vol. 14, Issue 6, pp. 2544–2567). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d2fo02180c DOI: https://doi.org/10.1039/D2FO02180C
Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging applications. In RSC Advances (Vol. 10, Issue 33, pp. 19309–19336). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d0ra01084g
Manjunatha, R. L., Naik, D., & Usharani, K. V. (2019). Nanotechnology Application in Agriculture: A Review. In Journal of Pharmacognosy and Phytochemistry (Vol. 8, Issue 3, pp. 1073–1083). Society of Pharmacognosy and Phytochemistry.
Nguyen, J. T., & Cheng, W. (2022). A Review on Epidermal Nanogenerators: Recent Progress of the Future Self‐Powered Skins. In Small Structures (Vol. 3, Issue 8, p. 2200034). Wiley. https://doi.org/10.1002/sstr.202200034 DOI: https://doi.org/10.1002/sstr.202200034
Dutta, S., Corni, S., & Brancolini, G. (2022). Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. In International Journal of Molecular Sciences (Vol. 23, Issue 3, p. 1484). MDPI AG. https://doi.org/10.3390/ijms23031484 DOI: https://doi.org/10.3390/ijms23031484
Feng, L., Song, S., Li, H., He, R., Chen, S., Wang, J., Zhao, G., & Zhao, X. (2023). Nano-Biosensors Based on Noble Metal and Semiconductor Materials: Emerging Trends and Future Prospects. In Metals (Vol. 13, Issue 4, p. 792). MDPI AG. https://doi.org/10.3390/met13040792 DOI: https://doi.org/10.3390/met13040792
Kierk, I., Bockrath, M., & Landi, M. (2007). Novel nano-biosensors for life science systems and their applications in early, accurate, and non-invasive melanoma and other types of cancer detection. In 2007 IEEE/NIH Life Science Systems and Applications Workshop. 2007 IEEE/NIH Life Science Systems and Applications Workshop. IEEE. https://doi.org/10.1109/lssa.2007.4400901 DOI: https://doi.org/10.1109/LSSA.2007.4400901
Mohamed, A. T. (2021). Emerging Nanotechnology Applications in Electrical Engineering. In Advances in Computer and Electrical Engineering. IGI Global. https://doi.org/10.4018/978-1-7998-8536-8 DOI: https://doi.org/10.4018/978-1-7998-8536-8
Moulahoum, H., Ghorbanizamani, F., Guler Celik, E., & Timur, S. (2022). Nano-Scaled Materials and Polymer Integration in Biosensing Tools. In Biosensors (Vol. 12, Issue 5, p. 301). MDPI AG. https://doi.org/10.3390/bios12050301 DOI: https://doi.org/10.3390/bios12050301
Zhao, L., Zhou, Y., Niu, G., Gao, F., Sun, Z., Li, H., & Jiang, Y. (2022). Advances in Chiral Gold Nano‐Assemblies and Their Bioapplication Based on Optical Properties. In Particle & Particle Systems Characterization (Vol. 39, Issue 4, p. 2100231). Wiley. https://doi.org/10.1002/ppsc.202100231 DOI: https://doi.org/10.1002/ppsc.202100231
Malhotra, B. D., Srivastava, S., & Augustine, S. (2015). Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene. In MRS Proceedings (Vol. 1725). Springer Science and Business Media LLC. https://doi.org/10.1557/opl.2015.165 DOI: https://doi.org/10.1557/opl.2015.165
Domínguez-Aragón, A., Dominguez, R. B., & Zaragoza-Contreras, E. A. (2021). Simultaneous Detection of Dihydroxybenzene Isomers Using Electrochemically Reduced Graphene Oxide-Carboxylated Carbon Nanotubes/Gold Nanoparticles Nanocomposite. In Biosensors (Vol. 11, Issue 9, p. 321). MDPI AG. https://doi.org/10.3390/bios11090321 DOI: https://doi.org/10.3390/bios11090321
Burdanova, M. G., Kharlamova, M. V., Kramberger, C., & Nikitin, M. P. (2021). Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. In Nanomaterials (Vol. 11, Issue 11, p. 3020). MDPI AG. https://doi.org/10.3390/nano11113020 DOI: https://doi.org/10.3390/nano11113020
Ma, C., Gao, Q., Hong, W., Fan, J., & Fang, J. (2016). Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy. In Advanced Functional Materials (Vol. 27, Issue 2, p. 1603233). Wiley. https://doi.org/10.1002/adfm.201603233 DOI: https://doi.org/10.1002/adfm.201603233
Chen, S., Li, M., Weng, T., Wang, D., & Geng, J. (2023). Recent progress of biosensors for the detection of lung cancer markers. In Journal of Materials Chemistry B (Vol. 11, Issue 25, pp. 5715–5747). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d2tb02277j DOI: https://doi.org/10.1039/D2TB02277J
Koh, E. H., Lee, W.-C., Choi, Y.-J., Moon, J.-I., Jang, J., Park, S.-G., Choo, J., Kim, D.-H., & Jung, H. S. (2021). A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. In ACS Applied Materials & Interfaces (Vol. 13, Issue 2, pp. 3024–3032). American Chemical Society (ACS). https://doi.org/10.1021/acsami.0c18892 DOI: https://doi.org/10.1021/acsami.0c18892
Lee, S.-K., Jung, J.-M., Lee, J.-S., & Jung, H.-T. (2010). Fabrication of Complex Patterns with a Wide Range of Feature Sizes from a Single Line Prepattern by Successive Application of Capillary Force Lithography. In Langmuir (Vol. 26, Issue 17, pp. 14359–14363). American Chemical Society (ACS). https://doi.org/10.1021/la100414c DOI: https://doi.org/10.1021/la100414c
Acevedo, D. A., Lasagni, A. F., Barbero, C. A., & Mücklich, F. (2007). Simple Fabrication Method of Conductive Polymeric Arrays by Using Direct Laser Interference Micro-/Nanopatterning. In Advanced Materials (Vol. 19, Issue 9, pp. 1272–1275). Wiley. https://doi.org/10.1002/adma.200601693 DOI: https://doi.org/10.1002/adma.200601693
Barbillon, G. (2013). Sub-30 nm Plasmonic Nanostructures by Soft UV Nanoimprint Lithography. In Updates in Advanced Lithography. InTech. https://doi.org/10.5772/56119 DOI: https://doi.org/10.5772/56119
Lee, K.-L., Wu, T.-Y., Hsu, H.-Y., Yang, S.-Y., & Wei, P.-K. (2017). Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods. In Sensors (Vol. 17, Issue 7, p. 1548). MDPI AG. https://doi.org/10.3390/s17071548 DOI: https://doi.org/10.3390/s17071548
Chen, Y., Li, Z., Zhang, Z., & Scherer, A. (2011). Fabrication of Circular Grating Distributed Feedback Dye Laser by Nanoimprint Lithography. In Recent Advances in Nanofabrication Techniques and Applications. InTech. https://doi.org/10.5772/20577 DOI: https://doi.org/10.5772/20577
Biosensor for detection of bacteria with probiotic potential and food pathogens. (2020). In Letters in Applied NanoBioScience (Vol. 9, Issue 1, pp. 800–807). AMG Transcend Association. https://doi.org/10.33263/lianbs91.800807 DOI: https://doi.org/10.33263/LIANBS91.800807
S, B., & S, B. (2016). Plasmonic Sensors for Disease Detection - A Review. In Journal of Nanomedicine & Nanotechnology (Vol. 7, Issue 3). OMICS Publishing Group. https://doi.org/10.4172/2157-7439.1000373 DOI: https://doi.org/10.4172/2157-7439.1000373
Lymberis, A. (2008). Converging micro-nano-bio technologies towards integrated biomedical systems: State of the art and future perspectives under the EU-information & communication technologies program. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/iembs.2008.4649076
Su, J., Liu, W., Chen, S., Deng, W., Dou, Y., Zhao, Z., Li, J., Li, Z., Yin, H., Ding, X., & Song, S. (2020). A Carbon-Based DNA Framework Nano–Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio. In ACS Sensors (Vol. 5, Issue 12, pp. 3979–3987). American Chemical Society (ACS). https://doi.org/10.1021/acssensors.0c01745 DOI: https://doi.org/10.1021/acssensors.0c01745
Halonen, N., Pálvölgyi, P. S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., & Kordas, K. (2020). Bio-Based Smart Materials for Food Packaging and Sensors – A Review. In Frontiers in Materials (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fmats.2020.00082 DOI: https://doi.org/10.3389/fmats.2020.00082
Mylvaganam, H. (2020). Application of Nanotechnology in Food Packaging: A Review. In Journal of Food Technology and Preservation (Vol. 4, Issue 4, pp. 1– 4). Pubtexto Publishers.
Hefft, D. I. (2017). Developments and Properties of Plastic Mimicking Biopolymers for Food Packaging Application. In Journal of Applied Packaging Research (Vol. 9, Issue 2, pp. 47–60). The Rochester Institute of Technology.
Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T., & Han, Y. (2022). Recent advances in carrageenan-based films for food packaging applications. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fnut.2022.1004588 DOI: https://doi.org/10.3389/fnut.2022.1004588
Avila, L. B., Schnorr, C., Silva, L. F. O., Morais, M. M., Moraes, C. C., da Rosa, G. S., Dotto, G. L., Lima, É. C., & Naushad, Mu. (2023). Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging. In Foods (Vol. 12, Issue 8, p. 1692). MDPI AG. https://doi.org/10.3390/foods12081692 DOI: https://doi.org/10.3390/foods12081692
Dodero, A., Escher, A., Bertucci, S., Castellano, M., & Lova, P. (2021). Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. In Applied Sciences (Vol. 11, Issue 8, p. 3532). MDPI AG. https://doi.org/10.3390/app11083532 DOI: https://doi.org/10.3390/app11083532
Tan, C., Han, F., Zhang, S., Li, P., & Shang, N. (2021). Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. In International Journal of Molecular Sciences (Vol. 22, Issue 18, p. 9663). MDPI AG. https://doi.org/10.3390/ijms22189663 DOI: https://doi.org/10.3390/ijms22189663
Salgado, P. R., Di Giorgio, L., Musso, Y. S., & Mauri, A. N. (2021). Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. In Frontiers in Sustainable Food Systems (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fsufs.2021.630393 DOI: https://doi.org/10.3389/fsufs.2021.630393
Jian, W. (2014). Analysis on Food Packaging Materials Laws and Regulations and Standards Between China and Some Developed Countries. Journal of Food Safety and Quality.
Amirullah, N. A., Samsudin, M. H., Norrrahim, M. N. F., Ilyas, R. A., Nurazzi, N. M., Jenol, M. A., Hawanis, H. S. N., & Gunny, A. A. N. (2023). Regulations for food packaging materials. In Physical Sciences Reviews (Vol. 0, Issue 0). Walter de Gruyter GmbH. https://doi.org/10.1515/psr-2022-0033 DOI: https://doi.org/10.1515/psr-2022-0033
Tarina, D.D.Y., Hutabarat, S.M.D., & Sakti, M. (2019). Implementation of Labeling Standards for Food Packaging Products in Indonesia. International Journal of Multicultural and Multireligious Understanding (IJMMU), 6(Special Issue 1), 1-20.
B T, C., A, K., & K Sanikop, N. (2021). Food Packaging in India: An Overview. In International Research Journal on Advanced Science Hub (Vol. 3, Issue Special Issue 7S, pp. 103–110). RSP Science Hub. https://doi.org/10.47392/irjash.2021.218 DOI: https://doi.org/10.47392/irjash.2021.218
Prakash, A., Sen, S., & Dixit, R. (2013). The Emerging Usage and Applications of Nanotechnology in Food Processing Industries: The New Age of Nanofood. In International Journal of Pharmaceutical Sciences Review and Research (Vol. 22, Issue 21, pp. 107–111). Global Research Online.
Wegari Dera, M., & Bogale Teseme, W. (2020). Review on the Application of Food Nanotechnology in Food Processing. In American Journal of Engineering and Technology Management (Vol. 5, Issue 2, p. 41). Science Publishing Group. https://doi.org/10.11648/j.ajetm.20200502.12 DOI: https://doi.org/10.11648/j.ajetm.20200502.12
Berekaa, M. M. (2015). Nanotechnology in Food Industry: Advances in Food Processing, Packaging, and Food Safety. In International Journal of Current Microbiology and Applied Sciences (Vol. 4, Issue 5, pp. 345–357). Self publishing.
H. G. Prakash, S. D., & Seema Sonkar, P. M. (2021). Potential Application of Nanotechnology in Food Processing and Packaging: A Review. In International Journal of Current Microbiology and Applied Sciences (Vol. 10, Issue 10, pp. 601–613). Excellent Publishers. https://doi.org/10.20546/ijcmas.2021.1010.070 DOI: https://doi.org/10.20546/ijcmas.2021.1010.070
Frewer, L. J., Norde, W., Fischer, A., & Kampers, F. (Eds.). (2011). Nanotechnology in the Agri‐Food Sector. Wiley. https://doi.org/10.1002/9783527634798 DOI: https://doi.org/10.1002/9783527634798
EA, H. (2016). Nano-biotechnology breakthrough and food-packing industry- A Review. In Microbial Biosystems (Vol. 1, Issue 1, pp. 50–69). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/mb.2016.5257 DOI: https://doi.org/10.21608/mb.2016.5257
John, A., Črešnar, K. P., Bikiaris, D. N., & Zemljič, L. F. (2023). Colloidal Solutions as Advanced Coatings for Active Packaging Development: Focus on PLA Systems. In Polymers (Vol. 15, Issue 2, p. 273). MDPI AG. https://doi.org/10.3390/polym15020273 DOI: https://doi.org/10.3390/polym15020273
Baghi, F., Gharsallaoui, A., Dumas, E., & Ghnimi, S. (2022). Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. In Foods (Vol. 11, Issue 5, p. 760). MDPI AG. https://doi.org/10.3390/foods11050760 DOI: https://doi.org/10.3390/foods11050760
Soria-Lopez, A., Carpena, M., Nuñez-Estevez, B., Garcia-Oliveira, P., Collazo, N., Otero, P., Garcia-Perez, P., Cao, H., Xiao, J., Carocho, M., Barros, L., Simal-Gandara, J., & Prieto, M. A. (2021). Essential Oils as Possible Candidates to Be Included in Active Packaging Systems and the Use of Biosensors to Monitor the Quality of Foodstuff. In The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry. CSAC2021. MDPI. https://doi.org/10.3390/csac2021-10485 DOI: https://doi.org/10.3390/CSAC2021-10485
E Trujillo, L., & Avalos, R. (2016). Nanotechnology Applications for Food and Bioprocessing Industries. In Biology and Medicine (Vol. 08, Issue 03). OMICS Publishing Group. https://doi.org/10.4172/0974-8369.1000289 DOI: https://doi.org/10.4172/0974-8369.1000289
Gao, F., Feng, S., Chen, Z., Li-Chan, E. C. Y., Grant, E., & Lu, X. (2014). Detection and Quantification of Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian Penny-Based SERS Nano-Biosensor. In Journal of Food Science (Vol. 79, Issue 12, pp. N2542–N2549). Wiley. https://doi.org/10.1111/1750-3841.12705 DOI: https://doi.org/10.1111/1750-3841.12705
Dautta, M., Dia, K. K. H., Hajiaghajani, A., Escobar, A. R., Alshetaiwi, M., & Tseng, P. (2021). Multiscale, Nano‐ to Mesostructural Engineering of Silk Biopolymer‐Interlayer Biosensors for Continuous Comonitoring of Nutrients in Food. In Advanced Materials Technologies (Vol. 7, Issue 2, p. 2100666). Wiley. https://doi.org/10.1002/admt.202100666 DOI: https://doi.org/10.1002/admt.202100666
Naresh, Varnakavi., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. In Sensors (Vol. 21, Issue 4, p. 1109). MDPI AG. https://doi.org/10.3390/s21041109 DOI: https://doi.org/10.3390/s21041109
Guo, Z. (2014). Development of Electrochemical Biosensors for Environmental Pollutant and Food Safety Monitoring. [Doctoral dissertation, Université Claude Bernard - Lyon]. Retrieved from https://theses.hal.science/tel-01128300/document.
Kadam, A. A., Saratale, G. D., Ghodake, G. S., Saratale, R. G., Shahzad, A., Magotra, V. K., Kumar, M., Palem, R. R., & Sung, J.-S. (2022). Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. In Chemosensors (Vol. 10, Issue 2, p. 58). MDPI AG. https://doi.org/10.3390/chemosensors10020058 DOI: https://doi.org/10.3390/chemosensors10020058
Santos, A. S. (2017). Meat and Meat Chain - Development of a New Molecular Diagnostic Test. [Doctoral dissertation, Universidade do Porto]. Retrieved from https://repositorio-aberto.up.pt/bitstream/10216/104296/2/193401.pdf.
Asano, S., Shimokawa, M., & Suzuki, K. (2018). PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. In Lactic Acid Bacteria (pp. 95–107). Springer New York. https://doi.org/10.1007/978-1-4939-8907-2_9 DOI: https://doi.org/10.1007/978-1-4939-8907-2_9
Longin, C., Laforgue, R., Badet-Murat, M.-L., & Alexandre, H. (2022). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology - Part 1/2 Review of the usual methods applied in wine microbiology and the principle of flow cytometry. In IVES Technical Reviews, vine and wine. Universite de Bordeaux. https://doi.org/10.20870/ives-tr.2022.7303 DOI: https://doi.org/10.20870/IVES-TR.2022.7303
Carraturo, F. (2017). Metabolomic profiling and molecular characterization of food matrices: identification of potential markers of microbial contamination. UNINA/FEDOA. https://doi.org/10.6093/UNINA/FEDOA/11474
Chen, H., Wortmann, A., & Zenobi, R. (2007). Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting. In Journal of Mass Spectrometry (Vol. 42, Issue 9, pp. 1123–1135). Wiley. https://doi.org/10.1002/jms.1282 DOI: https://doi.org/10.1002/jms.1282
MD, O., PA, B., AG, P., & AM, P. (2009). Protein analysis: progress of analytical techniques. In International Journal of Chemical Research (Vol. 1, Issue 2, pp. 8–17). Bioinfo Publications. https://doi.org/10.9735/0975-3699.1.2.8-17 DOI: https://doi.org/10.9735/0975-3699.1.2.8-17
Ghosh, T., Raj, G. V. S. B., & Dash, K. K. (2022). A comprehensive review on nanotechnology based sensors for monitoring quality and shelf life of food products. In Measurement: Food (Vol. 7, p. 100049). Elsevier BV. https://doi.org/10.1016/j.meafoo.2022.100049 DOI: https://doi.org/10.1016/j.meafoo.2022.100049
Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging applications. In RSC Advances (Vol. 10, Issue 33, pp. 19309–19336). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d0ra01084g DOI: https://doi.org/10.1039/D0RA01084G
Sharma, S. K., & Wang, X. (2017). Live Data Analytics With Collaborative Edge and Cloud Processing in Wireless IoT Networks. In IEEE Access (Vol. 5, pp. 4621–4635). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/access.2017.2682640 DOI: https://doi.org/10.1109/ACCESS.2017.2682640
Mirza Baig, M., & Sonekar, Dr. S. (2022). Improving Health WSN with Distinguished Cloud Computing for Multi-Sensor Analytics. In International Journal of Next-Generation Computing. Perpetual Innovation Media Pvt. Ltd. https://doi.org/10.47164/ijngc.v13i5.972 DOI: https://doi.org/10.47164/ijngc.v13i5.972
Raghavendra, P. & Naika, S. C. L. (2018). Mobile Edge Cloud Computing with Big Data Analytics in IoT Networks. In International Journal of Creative Research Thoughts (Vol. 6, Issue 2, pp. 166–170). IJPUBLICATION.
Krishna, P. V., Yenduri, S., & Ariwa, E. (Eds.). (2020). In International Journal of Communication Systems (Vol. 33, Issue 13). Wiley. https://doi.org/10.1002/dac.v33.13 DOI: https://doi.org/10.1002/dac.4522
Ndunagu, J. N., Ukhurebor, K. E., Akaaza, M., & Onyancha, R. B. (2022). Development of a Wireless Sensor Network and IoT-based Smart Irrigation System. In M. Turjaman (Ed.), Applied and Environmental Soil Science (Vol. 2022, pp. 1–13). Hindawi Limited. https://doi.org/10.1155/2022/7678570 DOI: https://doi.org/10.1155/2022/7678570
Shamrao, B.P. & Sadashivrao, P.V. (2022). Antioxidant Properties of Silver Nanoparticles and Methanol Extract of Cinnamomum verum Bark. In International Journal of Creative Research Thoughts (Vol. 10, Issue 2, pp. 526–534). IJPUBLICATION.
Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2022). Innovative processes in smart packaging. A systematic review. In Journal of the Science of Food and Agriculture (Vol. 103, Issue 3, pp. 986–1003). Wiley. https://doi.org/10.1002/jsfa.11863 DOI: https://doi.org/10.1002/jsfa.11863
Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. In ACS Sensors (Vol. 4, Issue 4, pp. 808–821). American Chemical Society (ACS). https://doi.org/10.1021/acssensors.9b00440 DOI: https://doi.org/10.1021/acssensors.9b00440
Kumar, V., Raghuwanshi, S. K., & Kumar, S. (2022). Recent Advances in Carbon Nanomaterials Based SPR Sensor for Biomolecules and Gas Detection—A Review. In IEEE Sensors Journal (Vol. 22, Issue 16, pp. 15661–15672). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/jsen.2022.3191042 DOI: https://doi.org/10.1109/JSEN.2022.3191042
Aggudey, D.D. (2020). Graphene-like 2-D Nanomaterials and Their Properties. [Doctoral dissertation, Montclair State University]. Retrieved from https://digitalcommons.montclair.edu/etd/342/.
Narayanan, K. B., & Han, S. S. (2017). Helical plant viral nanoparticles—bioinspired synthesis of nanomaterials and nanostructures. In Bioinspiration & Biomimetics (Vol. 12, Issue 3, p. 031001). IOP Publishing. https://doi.org/10.1088/1748-3190/aa6bfd DOI: https://doi.org/10.1088/1748-3190/aa6bfd
Ratre, P., Nazeer, N., Kumari, R., Thareja, S., Jain, B., Tiwari, R., Kamthan, A., Srivastava, R. K., & Mishra, P. K. (2023). Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs. In Biosensors (Vol. 13, Issue 2, p. 226). MDPI AG. https://doi.org/10.3390/bios13020226 DOI: https://doi.org/10.3390/bios13020226
Gupta, P., Mittal, A. K., Mishra, K., Handa, N., & Paul, M. K. (2023). Current Expansion of Silver and Gold Nanomaterials towards Cancer Theranostics: Development of Therapeutics. In Current Nanoscience (Vol. 19). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573413719666230503144904 DOI: https://doi.org/10.2174/1573413719666230503144904
Singhal, J., Verma, S., Kumar, S., & Mehrotra, D. (2021). Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. In Molecular Biotechnology (Vol. 63, Issue 5, pp. 339–362). Springer Science and Business Media LLC. https://doi.org/10.1007/s12033-021-00306-x DOI: https://doi.org/10.1007/s12033-021-00306-x
Wang, H., Xue, Z., Dardir, K., & Fabris, L. (2021). Bioconjugation strategies toward efficient intracellular nanoparticle probes. In M. Osiński & A. G. Kanaras (Eds.), Colloidal Nanoparticles for Biomedical Applications XVI. SPIE. https://doi.org/10.1117/12.2583250 DOI: https://doi.org/10.1117/12.2583250
Mohd Asri, M. A., Nordin, A. N., & Ramli, N. (2021). Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. In Biomicrofluidics (Vol. 15, Issue 6). AIP Publishing. https://doi.org/10.1063/5.0071176 DOI: https://doi.org/10.1063/5.0071176
Hunt, H. K., & Armani, A. M. (2014). Bioconjugation Strategies for Label-Free Optical Microcavity Sensors. In IEEE Journal of Selected Topics in Quantum Electronics (Vol. 20, Issue 2, pp. 121–133). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/jstqe.2013.2272916 DOI: https://doi.org/10.1109/JSTQE.2013.2272916
Liébana, S., & Drago, G. A. (2016). Bioconjugation and stabilisation of biomolecules in biosensors. In P. Estrela (Ed.), Essays in Biochemistry (Vol. 60, Issue 1, pp. 59–68). Portland Press Ltd. https://doi.org/10.1042/ebc20150007 DOI: https://doi.org/10.1042/EBC20150007
Hunt, H. K., Soteropulos, C., & Armani, A. M. (2010). Bioconjugation Strategies for Microtoroidal Optical Resonators. In Sensors (Vol. 10, Issue 10, pp. 9317–9336). MDPI AG. https://doi.org/10.3390/s101009317 DOI: https://doi.org/10.3390/s101009317
Manam, Dr. V. K. (2021). Nano Biosensors Containing Non-Carbon-Based Nanomaterials to Access Environmental Pollution Level. In SSRN Electronic Journal. Elsevier BV. https://doi.org/10.2139/ssrn.3869459 DOI: https://doi.org/10.2139/ssrn.3869459
Kang, M.-J., Cho, Y.-W., & Kim, T.-H. (2023). Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. In Biosensors (Vol. 13, Issue 5, p. 501). MDPI AG. https://doi.org/10.3390/bios13050501 DOI: https://doi.org/10.3390/bios13050501
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.