Estimation of phenolic compounds content and antioxidant activity of leaves extracts of some selected non-traditional plants
DOI:
https://doi.org/10.5219/1314Keywords:
non-traditional plants, leaves, phenolic compounds, antioxidant activityAbstract
The aim of the research is the determination of the total antioxidant activity and the content of phenolic compounds of the leaves of 12 species of non-traditional plants, namely, Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem., Aronia mitschurinii A.K. Skvortsov & Maitul., Castanea sativa Mill., Chaenomeles japonica (Thunb.) Lindl., Cornus mas L., Diospyros kaki L., Diospyros lotus L., Diospyros virginiana L., Lycium barbarum L., Lycium сhinense Mill., Pseudocydonia sinensis (Thouin) C.K. Schneid., Ziziphus jujuba Mill. Total phenolic content was evaluated using the Folin-Ciocalteu reagent assay. Antioxidant activity was measured using two different methods (DPPH – 2,2-diphenyl-1-picrylhydrazyl, MRAP – molybdenum reducing antioxidant power). Significant variability was observed in phenolic compounds content and total antioxidant activity. Total polyphenol content ranged from 38.02 (Z. jujuba) to 80.58
(C. sativa) mg GAE.g-1 DM, total flavonoid content from 22.47 (P. sinensis) to 54.61 (L. barbarum) mg QE.g-1 DM and phenolic acids content from 3.51 (A. mitschurinii) to 24.67 (Ch. japonica) mg CAE.g-1 DM. All tested samples exhibited DPPH• radical scavenging activities with values from 6.92 (A. mitschurinii) to 9.0 (C. mas) mg TEAC.g-1 DM. Antioxidant activity by molybdenum reducing antioxidant power method ranged from 109.43 (A. mitschurinii) to 322.95 (C. mas) mg TEAC.g-1 DM. Differences between the species of non-traditional plants were significant in all observed parameters. Obtained results of phytochemical composition demonstrated the possibility of leaves' use of non-traditional plants as sources of valuable bioactive compounds with health-promoting and disease-preventing properties.
Downloads
Metrics
References
Ahn, H. R., Kim, K.-A., Kang, S. W., Lee, J. Y., Kim, T.-J., Jungb, S. H. 2017. Persimmon leaves (Diospyros kaki) extract protects optic nerve crush-induced retinal degeneration. Sci. Rep., vol. 7, p. 46449. https://doi.org/10.1038/srep46449 DOI: https://doi.org/10.1038/srep46449
Al-Saeedi, A. H., Al-Ghafri, M. T. H., Hossain, M. A. 2016. Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pacific Science Review A: Natural Science and Engineering, vol. 18, no. 1, p. 78-83. https://doi.org/10.1016/j.psra.2016.09.001 DOI: https://doi.org/10.1016/j.psra.2016.09.001
Amjad, L., Shafighi, M. 2012. Antioxidant activity of leaf different extracts in Punica granatum. Int. J. Biol. Med. Res., vol. 3, no. 3, p. 2065-2067.
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, vol. 8, no. 4, p. 96. https://doi.org/10.3390/plants8040096 DOI: https://doi.org/10.3390/plants8040096
Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., Pereira, J. A. 2010. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Science and Technology International, vol. 16, no. 3, p. 209-216. https://doi.org/10.1177/1082013209353983 DOI: https://doi.org/10.1177/1082013209353983
Bhatt, L. R., Wagle, B., Adhikari, M., Bhusal, S., Giri, A., Bhattarai, Sh. 2018. Antioxidant activity, total phenolic and flavonoid content of Berberis aristata DC. and Berberis thomsoniana C.K. Schneid. from Sagarmatha National Park, Nepal. Pharmacogn. J., vol. 10, no. 6, p. 167-171. https://doi.org/10.5530/pj.2018.6s.29 DOI: https://doi.org/10.5530/pj.2018.6s.29
Brindza, J., Grygorieva, O., Klymenko, S., Vergun, O., Mareček, J., Ivanišová, E. 2019. Variation of fruits morphometric parameters and bioactive compounds of Asimina triloba (L.) Dunal germplasm collection. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 1-7. https://doi.org/10.5219/1019 DOI: https://doi.org/10.5219/1019
Bystrická, J., Musilová, J., Lichtnerová, H., Lenková, M., Kovarovič, J., Chalas, M. 2017. The content of total polyphenols, ascorbic acid and antioxidant activity in selected varieties of quince (Cydonia oblonga Mill.). Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 77-81. https://doi.org/10.5219/699 DOI: https://doi.org/10.5219/699
Calliste, C.-A., Trouillas, P., Allais, D.-P., Duroux, J.-L. 2005. Castanea sativa Mill. leaves as new sources of natural antioxidant: an electronic spin resonance study. J. Agric. Food Chem., vol. 53, no. 2, p. 282-288. https://doi.org/10.1021/jf049341c DOI: https://doi.org/10.1021/jf049341c
Costa, L. M., Gouveia, S. T., Nobrega, J. A. 2002. Comparison of heatingextraction procedures for Al, Ca, Mg and Mn in tea samples. AnnSci., vol. 18, no. 3, p. 313-318. DOI: https://doi.org/10.2116/analsci.18.313
Cushnie, T. P., Lamb, A. J. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, vol. 26, no. 5, p. 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002 DOI: https://doi.org/10.1016/j.ijantimicag.2005.09.002
Cuvorova, I. N., Davydov, V. V., Prozorovskii, V. N., Shvets, V. N. 2005. Peculiarity of the antioxidant action of the extract from Aronia melanocarpa leaves antioxidant on the brain. Biomed Khim., vol. 51, p. 66-71.
Chávez, J. H., Leal, P. C., Yunes, R. A., Nunes, R. J., Barardi, C. R. M., Pinto, A. R., Simoes, C. M. O., Zanetti, C. R. 2006. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. In Veterinary Microbiology, vol. 116, no. 1-3, p. 53-59. https://doi.org/10.1016/j.vetmic.2006.03.019 DOI: https://doi.org/10.1016/j.vetmic.2006.03.019
Farmakopea Polska. 1999. Poland: The Polish Farmaceutical Society, p. 880-881.
Ferlemi, A.-V., Lamari, F. N. 2016. Berry leaves: an alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants, vol. 5, no. 2, p. 17. https://doi.org/10.3390/antiox5020017 DOI: https://doi.org/10.3390/antiox5020017
Gapuz, M. C. D., Besagas, R. L. 2018. Phytochemical profiles and antioxidant activities of leaf extracts of Euphorbia species. Journal of Biodiversity and Environmental Sciences, vol. 12, no. 4, p. 59-65.
Grygorieva, O., Kucharska, A.Z., Piórecki, N., Klymenko, S., Vergun, O., Brindza, J. 2018. Antioxidant activities and phenolic compounds in fruits of various genotypes of American persimmon (Diospyros virginiana L.). Acta Sci. Pol. Technol. Aliment., vol. 17, no. 2, p. 117-124. http://doi.org/10.17306/J.AFS.0544 DOI: https://doi.org/10.17306/J.AFS.0544
Horčinová Sedláčková, V., Grygorieva, O., Fatrcová-Šramková, K., Vergun, O., Vinogradova, Y., Ivanišová, E., Brindza, J. 2018. The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 444-453. https://doi.org/10.5219/919 DOI: https://doi.org/10.5219/919
Ipatova, O. M., Prozorovskaia, N. N., Rusina, I. F., Prozorovskii, V. N. 2003. Antioxidant properties of a leaf extract from Aronia (Aronia melanocarpa) containing proanthocyanidins. Biomed Khim., vol. 49, p. 165-176.
Ivanišová, E., Grygorieva, O., Abrahamová, V., Schubertova, Z., Terentjeva, M., Brindza, J. 2017. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). Journal of Berry Research, vol. 7, no. 4, p. 249-260. https://doi.org/10.3233/JBR-170162 DOI: https://doi.org/10.3233/JBR-170162
Iyawe, H. O. T., Azih, M. C. 2011. Total phenolic contents and lipid peroxidation potentials of some tropical antimalarial plants. Eur. J. Med. Plants, vol. 1, p. 33-39. https://doi.org/10.9734/EJMP/2011/171 DOI: https://doi.org/10.9734/EJMP/2011/171
Kandaswami, C., Lee, L. T., Lee, P. P., Hwang, J. J., Ke, F.-Ch., Huang, Y.-T., Lee, M.-T. 2005. The antitumor activities of flavonoids. In Vivo, vol. 19, no. 5, p. 895-909.
Khaleel, S. M. J., Jaran, A. S., Haddadin, M. S. Y. 2016. evaluation of total phenolic content and antioxidant activity of three leaf extracts of Ziziphus spina-christi (Sedr) grown in Jordan. British Journal of Medicine & Medical Research, vol. 14, no. 6, p. 1-8. https://doi.org/10.9734/BJMMR/2016/24935 DOI: https://doi.org/10.9734/BJMMR/2016/24935
Kim, S. Y., Jeong, S. M., Kim, S. J., Jeon, K. I., Park, E., Park, H. R., Lee, S. C. 2006. Effect of heat treatment on the antioxidative and antigenotoxic activity of extracts from persimmon (Diospyros kaki L.) peel. Biosci Biotechnol Biochem., vol. 70, 4, p. 999-1002. https://doi.org/10.1271/bbb.70.999 DOI: https://doi.org/10.1271/bbb.70.999
Klymenko, S., Grygorieva, O., Brindza, J. 2017. Less Known Species of Fruit Crops. Slovak University of Agriculture in Nitra. 104 p. https://doi.org/10.15414/2017.fe-9788055217659 DOI: https://doi.org/10.15414/2017.fe-9788055217659
Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., Piórecki, N. 2019a. Determination of antioxidant capacity and polyphenols contents in fruits of genotypes of Chaenomeles japonica (Thunb.) Lindl. Agrobiodiversity for Improving Nutrition, Health and Life Quality, vol. 3, p. 473-483. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.473-48
Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., Piórecki, N. 2019b. Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, vol. 3, p. 484-499. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.484-4
Lavola, A., Karjalainen, R., Julkunen-Tiitto, R. 2012. Bioactive polyphenols in leaves, stems, and berries of saskatoon (Amelanchier alnifolia Nutt.). Journal of Agricultural and Food Chemistry, vol. 60, p. 1020-1027. https://doi.org/10.1021/jf204056s DOI: https://doi.org/10.1021/jf204056s
Lee, J. S., Lee, M. K., Ha, T. Y., Bok, S. H., Park, H. M., Jeong, K. S., Woo, M. N., Do, G. M., Yeo, J. Y., Choi, M. S. 2006. Supplementation of whole persimmon leaf improves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem Toxicol., vol. 44, no. 11, p. 1875-1883. https://doi.org/10.1016/j.fct.2006.06.014 DOI: https://doi.org/10.1016/j.fct.2006.06.014
Liaudanskas, M., Viškelis, P., Raudonis, R., Kviklys, D., Uselis, N., Janulis, V. 2014. Phenolic composition and antioxidant activity of Malus domestica leaves. The Scientific World Journal, vol. 2014, Article ID 306217, p. 1-10. https://doi.org/10.1155/2014/306217 DOI: https://doi.org/10.1155/2014/306217
Lourenço, S. C., Moldão-Martins, M., Alves, V. D. 2019. Antioxidants of natural plant origins: from sources to food industry applications. Molecules, vol. 24, p. 4132, https://doi.org/10.3390/molecules24224132 DOI: https://doi.org/10.3390/molecules24224132
Mahajan, R. T., Chobda, M. Z. 2009. Phyto-pharmacology of Ziziphus jujuba Mill. Aplant review. Pharmacogn. Rev., vol. 3, p. 320-329. https://doi.org/10.1016/j.indcrop.2015.11.029 DOI: https://doi.org/10.1016/j.indcrop.2015.11.029
Męczarska, K., Cyboran-Mikołajczyk, S., Włoch, A.,Bonarska-Kujawa, D., Oszmiański, J., Kleszczyńska, H. 2017. Polyphenol content and bioactivity of saskatoon (Amelanchier alnifolia Nutt.) leaves and berries. Acta Polonia Pharmaceutica – Drug Research, vol. 74, no. 2, p. 660-669.
Nam, J. S., Jang, H. L., Rhee, Y. H. 2017. Antioxidant activities and phenolic compounds of several tissues of pawpaw (Asimina triloba [L.] Dunal) grown in Korea. J. Food Sci., vol. 82, no. 8, p. 1827-1833. https://doi.org/10.1111/1750-3841.13806 DOI: https://doi.org/10.1111/1750-3841.13806
Olszewska, M. A. 2011. Variation in the phenolic content and in vitro antioxidant activity of Sorbus aucuparia leaf extracts during vegetation. Acta Poloniae Pharmaceutica n Drug Research, vol. 68, no. 6 p. 937-944.
Pandey, K. B., Rizvi, S. I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, p. 270-278. https://doi.org/10.4161/oxim.2.5.9498 DOI: https://doi.org/10.4161/oxim.2.5.9498
Pastore, S., Potapovich, A., Kostyuk, V., Mariani, V., Lulli, D., De Luca, C., Korkina, L. 2009. Plant polyphenols effectively protect HaCaT cells from ultraviolet C-triggered necrosis and suppress inflammatory chemokine expression. Annals of the New York Academy of Sciences, vol. 1171, p. 305-313. https://doi.org/10.1111/j.1749-6632.2009.04684.x DOI: https://doi.org/10.1111/j.1749-6632.2009.04684.x
Prieto, P., Pinera, M., Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, vol. 269, p. 334-337. https://doi.org/10.1006/abio.1999.4019 DOI: https://doi.org/10.1006/abio.1999.4019
Priya, S., Nethaji, S. 2015. Evaluation of antioxidant activity of leaf and bark extracts of Diospyros virginiana in rats. Int.J. ChemTech Res., vol. 8, no. 3, p. 1032-1035.
Rietveld, A., Wiseman, S. 2003. Antioxidant effects of tea: evidence from human clinical trials. J. Nutr., vol. 133, no. 10, p. 3275-3284. https://doi.org/10.1093/jn/133.10.3285S DOI: https://doi.org/10.1093/jn/133.10.3285S
Ryu, R., Kim, H. J., Moon, B., Jung, U. J., Lee, M. K., Lee, D. G., Ryoo, Z., Park, Y. B., Choi, M. S. 2015. Ethanol extract of persimmon tree leaves improves blood circulation and lipid metabolism in rats fed a high-fat diet. J. Med. Food., vol. 18, no. 7, p. 715-723. https://doi.org/10.1089/jmf.2014.3307 DOI: https://doi.org/10.1089/jmf.2014.3307
Sakanaka, S., Tachibana, Y., Okada, Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinohacha). Food Chem., vol. 89, p. 569-575. DOI: https://doi.org/10.1016/j.foodchem.2004.03.013
Sanches-Moreno, C., Larrauri, A., Saura-Calixto, F. 1998. A procedure to measure the antioxidant efficiency of polyphenols. Journal of Sciences and Food Agricultural, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
Scalbert, A., Johnson, I. T., Saltmarsh, M. 2005. Polyphenols: antioxidants and beyond. American Journal of Clinical Nutrition, vol. 81, no. 1, p. 215S-217S. https://doi.org/10.1093/ajcn/81.1.215S DOI: https://doi.org/10.1093/ajcn/81.1.215S
Serteser, A., Kargioğlu, M., Gök, V., Bağci, Y., Özcan, M. M., Arslan, D. 2009. Antioxidant properties of some plants growing wild in Turkey. Grasas Y Aceites, vol. 60, p. 147-154. https://doi.org/10.3989/gya.086208 DOI: https://doi.org/10.3989/gya.086208
Shafii, Z. A., Basri, M., Malek, E. A., Ismail, M. 2017. Phytochemical and antioxidant properties of Manilkara zapota (L.) P roen fruit extracts and its formulations for cosmceuetical application. Asian Journal of Plant Science and Research, vol. 7, no. 3, p. 29-41.
Shahin, L., Phaal, S. S., Vaidya, B. N., Brown, J. E., Joshee, N. 2019. Aronia (Chokeberry): an underutilized, highly and nutraceutical plant. Journal of Medicinally Active Plants, vol. 8, no. 4, p. 46-63.
Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 6, p. 144-158.
Stankovic, M. S., Zia-Ul-Haq, M., Bojovic, B. M., Topuzovic, M. D. 2014. Total phenolics, flavonoid content and antioxidant power of leaf, flower and fruits from cornelian cherry (Cornus mas L.). Bulgarian Journal of Agricultural Science, vol. 20, no. 2, p. 358-363.
Thi, N. D., Hwang, E.-S. 2014. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. Food Sci., vol. 19, no. 3, p. 204-212. https://doi.org/10.3746/pnf.2014.19.3.204 DOI: https://doi.org/10.3746/pnf.2014.19.3.204
Tolić, M. T., Jurčević, I. L., Krbavčić, I. P., Marković, K., Vahčić, N. 2015. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol Biotechnol., vol. 53, no. 2, p. 171-179. https://doi.org/10.17113/ftb.53.02.15.3833 DOI: https://doi.org/10.17113/ftb.53.02.15.3833
Urbanaviciute, I., Liaudanskas, M., Seglina, D., Viskelis, P. 2019. Japanese quince Chaenomeles Japonica (Thunb.) Lindl. ex Spach leaves a new source of antioxidants for food. In International Journal of Food Properties, vol. 22, no. 1, p. 795-803. https://doi.org/10.1080/10942912.2019.1609984 DOI: https://doi.org/10.1080/10942912.2019.1609984
Xie, C., Xie, Z., Xu, X., Yang, D. 2015. Persimmon (Diospyros kaki L.) leaves: a review on traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol, vol. 163, p. 229-240. https://doi.org/10.1016/j.jep.2015.01.007 DOI: https://doi.org/10.1016/j.jep.2015.01.007
Yildirim, A. Oktay, M., Bülaloúlu, V. 2001. The antioxidant activity of the leaves of Cydonia vulgaris. Turk J. Med. Sci., vol. 31, p. 23-27.
Yılmaz, D. Ç., Seyhan, S. A. 2017. Antioxidant potential of Cydonia oblonga Miller leaves. Istanbul J. Pharm., vol. 47, no. 1, p. 9-1. https://doi.org/10.5152/IstanbulJPharm.2017.00 DOI: https://doi.org/10.5152/IstanbulJPharm.2017.003
Zhang, R., Chen, J., Shi, Q., Li, Z., Peng, Z., Li, Z., Wang, X. 2014. Phytochemicalanalysis of Chinese commercial Ziziphus jujube leaf tea using high performanceliquid chromatography–electrospray ionization-time of flight massspectrometry. Food Res. Int., vol. 56, p. 47-54. https://doi.org/10.1016/j.foodres.2013.12.019 DOI: https://doi.org/10.1016/j.foodres.2013.12.019
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.