The study of rapeseeds ash composition in the conditions of the agroecological experiment
DOI:
https://doi.org/10.5219/1356Keywords:
Brassica napus, analytical scanning electron microscopy, Energy Dispersive X-ray Analysis (EDS), ash elementsAbstract
A comparative analysis of the seeds ash composition of the breed Rif (Brassica napus L.) rapeseeds grown in the Lipetskaya region was held. The plants were grown in the conditions of the agroecological experiment using mineral (NPK and zeolite) and organic (hen droppings) fertilizers. 6 variants of the experiment were studied – the plants are grown without fertilizers application (the control); the mineral fertilizer (N60:P60:K60) separately and together with zeolite (5 t.ha-1); the zeolite in pure form (5 t.ha-1); hen droppings (5 t.ha-1) separately and together with zeolite (5 t.ha-1). We studied the accumulation of 9 basic elements (in mass %) contained in Brassica napus. seeds ash using the method of energy-dispersive X-ray spectroscopy. The accumulation order of the elements was determined: P ≈ K > Mg ≥ Ca > Mo > S > Zn > Mn > Fe. The proportion of P fluctuated from 10.852 to 11.855 mass %; the proportion of K – from 9.933 till 12.343 mass %. The rapeseeds contained Mg, Ca, and Mo in similar concentrations within the range of 4.0 -5.8 mass %. The combined application of zeolite with organic fertilizer ensured the accumulation of the minerals in the seeds. Correlations between the elements were established. High correlation between elements K and Mo was found (r = 0.96); P and Mg (0.86); P and Fe (r = 0.94); C and Mo (r = 0.86). The positive effect of the combined organic-mineral fertilizers with poultry farms wastes usage on the mineral elements accumulation in rapeseeds was stated. It is noted that the accumulation of P, Ca, Mo, and S in rape seeds leads to a decrease in Zn.
Downloads
References
Avtsyn, A. P., Zhavoronkov, A. A., Rishe, A. A., Strochkova, L. S. 1991. Microelementos of man: (etiology, classification, organopathology). Moscow, Russia : Medicine. 496 p. ISBN 5-225-02128-X. (in Russian)
Blake-Kalff, M. M. A., Hawkesford, M. J., Zhaho, F. J., McCrath, S. P. 2000. Diagnosting sulfur in field-grown oil-seed rape (Brassica napus L.) and wheat (Triticum aestinum L.). Plant and Soil., vol. 225, p. 95-107. https://doi.org/10.1023/A:1026503812267
Carrе, P., Pouzet, A. 2014. Rapeseed market, worldwide and in Europe. OCL – Oilseeds and fats, Crops and Lipids. vol. 21, no. 1, 12 p. https://doi.org/10.1051/ocl/2013054
Calısır, S., Marakoğlu, T., Ögüt, H., Öztürk, Ö. 2005. Physical properties of rapeseed (Brassica napus oleifera L.) Journal of Food Engineering, vol. 69, no.1, p, 61-66. https://doi.org/10.1016/j.jfoodeng.2004.07.010
Fageria, N. K., Baligar, V. C., Jones, C. A. 2010. Growth and Mineral Nutrition of Field Crops. 3rd ed. Florida, USA : CRC Press, 586 p. ISBN 9780429131158. https://doi.org/10.1201/b10160
Fordoński, G., Pszczółkowska, A., Okorski, A., Olszewski, J., Załuski, D., Gorzkowska, A. 2016. The yield and chemical composition of winter oilseed rape seeds depending on different nitrogen fertilization rates and preceding crop. Journal of Elementology, vol. 21, no. 4, p. 1225-1234. https://doi.org/10.5601/jelem.2016.21.2.1122
Gins, М., Gins, V., Mотyleva, S., Kulikov, I., Mеdvedev, S., Kononkov, P., Pivovarov, V. 2018. Mineral composition of amaranth (Amaranthus L.) seeds of vegetable and grain usage by arhivbsp selection. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 330-336. https://doi.org/10.5219/863
Gunhild, L., Martin, F., Wolfgang, F., Jackson, G. D. 2000. Effects of Nitrogen and Sulfur on Canola Yield and Nutrient Uptake. Agronomy Journal, vol. 92, no. 4, p. 644-649. https://doi.org/10.2134/agronj2000.924644x
Günnur, K., Nilgün, C. 2013. An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews, Elsevier, vol. 28, p.900-916. https://doi.org/10.1016/j.rser.2013.08.022
Hammond, J. P., White, P. J. 2008. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp Bot., vol. 59, no. 1, p. 93-109. https://doi.org/10.1093/jxb/erm221
Karpachev, V. V. 2009. Scientific assurance of rapeseed production in Russia. Farming, vol. 2, p. 8-10.
Meathnis, F. G. M., Ichida, A. M., Sanders, D., Schroeder, J. I. 1997. Roles of higher plant K+ channels. Plant Physiology, vol. 114, no. 4, p. 1141-1149. https://doi.org/10.1104/pp.114.4.1141
Lynch, J. P. 2007. Roots of the second green revolution. Aust J. Bot., vol. 55, no. 5, p. 493-512. https://doi.org/10.1071/BT06118
Manske, G. G. B., Ortiz-Monasterio, J. I., Ginkel, M., Gonzalez, R. M., Fischer, R. A., Rajamar, S., Vlek, P. L .G. 2001. Importance of P uptake efficiency versus P utiluzation for wheat yield in acid and galcareous soils in Mexico. Eur. J. Agron., vol. 14, no. 4, p. 261-274. https://doi.org/10.1016/s1161-0301(00)00099-x
Masoni, A., Eecoli, L., Mariotti, M., Arduini, I. 2007. Post-antesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron., vol. 26, no. 3, p. 179-186. https://doi.org/10.1016/j.eja.2006.09.006
Arif, M., Nasiruddin, Masood, T., Shah, S. S. 2012. Evaluation of oil seeds for their potential nutrients. ARPN Journal of Agricultural and Biological Science, vol. 7, no. 9, p.730-734.
Nechaev, А. P., Trauberg, S. Е., Kochetkova, А. А. 2007. Food chemistry. 4th ed. Russia : Gyord Publishing House. 640 p. ISBN 5-98879-011-9. (in Russian)
Pin Koh, L., Ghazoul, J. 2008. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, vol. 141, no. 10, p. 2450-2460. https://doi.org/10.1016/j.biocon.2008.08.005
Rathke, G. W., Christen, O., Diepenbrock, W. 2005. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research, vol. 94, no. 2-3, p. 103-113. https://doi.org/10.1016/j.fcr.2004.11.010
Ralphe, H. S., Astley, H., Bernhard, S., Gail, T., Petes, M. I. T. 2006. Energy crops: current status and future prospects. Global Change Biology, vol. 12, no. 11, p. 2054-2076. https://doi.org/10.1111/j.1365-2486.2006.01163.x
Rondanini, D. P., Gomez, N. V., Agosti, M. B., Miralles, D. J. 2012. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy, vol. 37, no. 1, p.5 6-65. https://doi.org/10.1016/j.eja.2011.10.005
Shmalko, N. А., Roslyakov, Y. F. 2011. Amaranth in food industry. Krasnodar, Russia : Prosveshchenie-South, 489 p. ISBN 978-5-93491-395-4. (in Russian)
Schoenau, J. J., Davis, J. G. 2006. Optimizing soil and plant responses to land-applied manure nutrients in the Great Plains of North America. Canadian Journal of Soil Science, vol. 86, no. 4, p. 587-595. https://doi.org/10.4141/S05-115
Szczepaniak, W., Grzebisz, W., Barłóg, P., Przygocka-Cyna, K. 2017. Mineral composition of winter oilseed rape (Brassica napus L.) seeds as a tool for oil yield prognosis. Journal of Central European Agriculture, vol. 18, no. 1, p. 196-213. https://doi.org/10.5513/JCEA01/18.1.1879
White, P. J., Veneklaas, E. J. 2012. Nature and nutrure: the importanse of seed phosphorus connet. Plant Soil, vol. 357, no. 1, p. 1-8. https://doi.org/10.1007/s11104-012-1128-4
White, P. L. 2013. Imporoving potassium acquisition and utilization by crop plants. Journal of Plant Nutrition and Science, vol. 176, no. 3, p. 305-316. https://doi.org/10.1002/jpln.201200121
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).