The study of rapeseeds ash composition in the conditions of the agroecological experiment


  • Tatyana Zubkova Bunin Yelets State University, Department of Technology for Storage and Processing of Agricultural Products,Yelets, Russia, st. Kommunarov, d. 28. Tel. +7-904-288-76
  • Svetlana Motyleva Federal State Budgetary Scientific Institution “All-Russian Horticultural Institute for Scioning, Agrotechnology and Nursery“, Laboratory of Svetlana Motyleva, PhD. Federal State Budgetary Scientific Institution “All-Russian Horticultural Institute for Scioning, Agrotechnology and Nursery“, Laboratory of Physiology and Biochemistry, Zagorevskaj 4, 115598 Moscow, Russia, Tel.+7910-205-27-10
  • Olga Dubrovina Bunin Yelets State University, Yelets, Russia, st. Kommunarov, d. 28. Tel: -
  • Ján Brindza Slovak University of Agricultural in Nitra, Faculty of Agrobiologyand Food Resources, Institute of Biological Conservationand Biosafety, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia, Tel: +421376414787



Brassica napus, analytical scanning electron microscopy, Energy Dispersive X-ray Analysis (EDS), ash elements


A comparative analysis of the seeds ash composition of the breed Rif (Brassica napus L.) rapeseeds grown in the Lipetskaya region was held. The plants were grown in the conditions of the agroecological experiment using mineral (NPK and zeolite) and organic (hen droppings) fertilizers. 6 variants of the experiment were studied – the plants are grown without fertilizers application (the control); the mineral fertilizer (N60:P60:K60) separately and together with zeolite (5 t.ha-1); the zeolite in pure form (5 t.ha-1); hen droppings (5 t.ha-1) separately and together with zeolite (5 t.ha-1). We studied the accumulation of 9 basic elements (in mass %) contained in Brassica napus. seeds ash using the method of energy-dispersive X-ray spectroscopy. The accumulation order of the elements was determined: P ≈ K > Mg ≥ Ca > Mo > S > Zn > Mn > Fe. The proportion of P fluctuated from 10.852 to 11.855 mass %; the proportion of K – from 9.933 till 12.343 mass %. The rapeseeds contained Mg, Ca, and Mo in similar concentrations within the range of 4.0 -5.8 mass %. The combined application of zeolite with organic fertilizer ensured the accumulation of the minerals in the seeds. Correlations between the elements were established. High correlation between elements K and Mo was found (r = 0.96); P and Mg (0.86); P and Fe (r = 0.94); C and Mo (r = 0.86). The positive effect of the combined organic-mineral fertilizers with poultry farms wastes usage on the mineral elements accumulation in rapeseeds was stated. It is noted that the accumulation of P, Ca, Mo, and S in rape seeds leads to a decrease in Zn.


Download data is not yet available.


Avtsyn, A. P., Zhavoronkov, A. A., Rishe, A. A., Strochkova, L. S. 1991. Microelementos of man: (etiology, classification, organopathology). Moscow, Russia : Medicine. 496 p. ISBN 5-225-02128-X. (in Russian)

Blake-Kalff, M. M. A., Hawkesford, M. J., Zhaho, F. J., McCrath, S. P. 2000. Diagnosting sulfur in field-grown oil-seed rape (Brassica napus L.) and wheat (Triticum aestinum L.). Plant and Soil., vol. 225, p. 95-107.

Carrе, P., Pouzet, A. 2014. Rapeseed market, worldwide and in Europe. OCL – Oilseeds and fats, Crops and Lipids. vol. 21, no. 1, 12 p.

Calısır, S., Marakoğlu, T., Ögüt, H., Öztürk, Ö. 2005. Physical properties of rapeseed (Brassica napus oleifera L.) Journal of Food Engineering, vol. 69, no.1, p, 61-66.

Fageria, N. K., Baligar, V. C., Jones, C. A. 2010. Growth and Mineral Nutrition of Field Crops. 3rd ed. Florida, USA : CRC Press, 586 p. ISBN 9780429131158.

Fordoński, G., Pszczółkowska, A., Okorski, A., Olszewski, J., Załuski, D., Gorzkowska, A. 2016. The yield and chemical composition of winter oilseed rape seeds depending on different nitrogen fertilization rates and preceding crop. Journal of Elementology, vol. 21, no. 4, p. 1225-1234.

Gins, М., Gins, V., Mотyleva, S., Kulikov, I., Mеdvedev, S., Kononkov, P., Pivovarov, V. 2018. Mineral composition of amaranth (Amaranthus L.) seeds of vegetable and grain usage by arhivbsp selection. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 330-336.

Gunhild, L., Martin, F., Wolfgang, F., Jackson, G. D. 2000. Effects of Nitrogen and Sulfur on Canola Yield and Nutrient Uptake. Agronomy Journal, vol. 92, no. 4, p. 644-649.

Günnur, K., Nilgün, C. 2013. An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews, Elsevier, vol. 28, p.900-916.

Hammond, J. P., White, P. J. 2008. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp Bot., vol. 59, no. 1, p. 93-109.

Karpachev, V. V. 2009. Scientific assurance of rapeseed production in Russia. Farming, vol. 2, p. 8-10.

Meathnis, F. G. M., Ichida, A. M., Sanders, D., Schroeder, J. I. 1997. Roles of higher plant K+ channels. Plant Physiology, vol. 114, no. 4, p. 1141-1149.

Lynch, J. P. 2007. Roots of the second green revolution. Aust J. Bot., vol. 55, no. 5, p. 493-512.

Manske, G. G. B., Ortiz-Monasterio, J. I., Ginkel, M., Gonzalez, R. M., Fischer, R. A., Rajamar, S., Vlek, P. L .G. 2001. Importance of P uptake efficiency versus P utiluzation for wheat yield in acid and galcareous soils in Mexico. Eur. J. Agron., vol. 14, no. 4, p. 261-274.

Masoni, A., Eecoli, L., Mariotti, M., Arduini, I. 2007. Post-antesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron., vol. 26, no. 3, p. 179-186.

Arif, M., Nasiruddin, Masood, T., Shah, S. S. 2012. Evaluation of oil seeds for their potential nutrients. ARPN Journal of Agricultural and Biological Science, vol. 7, no. 9, p.730-734.

Nechaev, А. P., Trauberg, S. Е., Kochetkova, А. А. 2007. Food chemistry. 4th ed. Russia : Gyord Publishing House. 640 p. ISBN 5-98879-011-9. (in Russian)

Pin Koh, L., Ghazoul, J. 2008. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, vol. 141, no. 10, p. 2450-2460.

Rathke, G. W., Christen, O., Diepenbrock, W. 2005. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research, vol. 94, no. 2-3, p. 103-113.

Ralphe, H. S., Astley, H., Bernhard, S., Gail, T., Petes, M. I. T. 2006. Energy crops: current status and future prospects. Global Change Biology, vol. 12, no. 11, p. 2054-2076.

Rondanini, D. P., Gomez, N. V., Agosti, M. B., Miralles, D. J. 2012. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy, vol. 37, no. 1, p.5 6-65.

Shmalko, N. А., Roslyakov, Y. F. 2011. Amaranth in food industry. Krasnodar, Russia : Prosveshchenie-South, 489 p. ISBN 978-5-93491-395-4. (in Russian)

Schoenau, J. J., Davis, J. G. 2006. Optimizing soil and plant responses to land-applied manure nutrients in the Great Plains of North America. Canadian Journal of Soil Science, vol. 86, no. 4, p. 587-595.

Szczepaniak, W., Grzebisz, W., Barłóg, P., Przygocka-Cyna, K. 2017. Mineral composition of winter oilseed rape (Brassica napus L.) seeds as a tool for oil yield prognosis. Journal of Central European Agriculture, vol. 18, no. 1, p. 196-213.

White, P. J., Veneklaas, E. J. 2012. Nature and nutrure: the importanse of seed phosphorus connet. Plant Soil, vol. 357, no. 1, p. 1-8.

White, P. L. 2013. Imporoving potassium acquisition and utilization by crop plants. Journal of Plant Nutrition and Science, vol. 176, no. 3, p. 305-316.



How to Cite

Zubkova, T. ., Motyleva, S., Dubrovina, O., & Brindza, J. (2021). The study of rapeseeds ash composition in the conditions of the agroecological experiment. Potravinarstvo Slovak Journal of Food Sciences, 15, 156–161.

Most read articles by the same author(s)

1 2 3 4 > >>