Use of non-conventional raw materials in the production of gluten-free pasta – a review
DOI:
https://doi.org/10.5219/1995Keywords:
gluten-free pasta, review, celiac disease, gluten-free flour, gluten free, flourAbstract
Currently, about 5% of the earth's population suffers from gluten-related disorders. Modern technologies for gluten-free diets and filling the protein deficit are aimed at manufacturing gluten-free (GF) pasta products using non-conventional plant raw materials with high biological value. GF grains and crops (rice, corn, buckwheat, amaranth, quinoa, etc.) are used to produce GF pasta products. However, there is a scarcity of studies that comprehensively understand GF flour addition on the nutritive, sensory and cooking properties. Therefore, the scope of this literature review covers the main types of non-conventional raw materials for GF pasta products and summarizes the research on pasta products made from them. Results indicate that the rheological and sensory attributes of pasta made from pure GF flours such as rice or corn still requires a deeper study of technological processes in producing GF pasta. Incorporating nutrient-dense ingredients such as amaranth, quinoa, sorghum, and chia flours not only enhances the nutritional profile of gluten-free pasta but also offers opportunities for diverse culinary applications. The improvement of sensory attributes in rice-, corn-, buckwheat-based pasta, coupled with the effective use of cooking enhancers like xanthan gum, transglutaminases, inulin, and alternative starches, paves the way for creating more palatable gluten-free options. As techniques such as high-temperature treatment, extrusion cooking, and starch pregelatinization become more refined, future developments may focus on optimizing these processes to further improve the texture, taste, and overall quality of gluten-free pasta. Continued research and innovation in ingredient selection and processing technologies will be crucial for meeting the growing demand for gluten-free products that do not compromise on culinary experience or nutritional value.
Downloads
Metrics
References
Biesiekierski, J. R. (2017). What is gluten? In Journal of Gastroenterology and Hepatology (Vol. 32, Issue S1, pp. 78–81). Wiley. https://doi.org/10.1111/jgh.13703 DOI: https://doi.org/10.1111/jgh.13703
Wieser, H. (2007). Chemistry of gluten proteins. In Food Microbiology (Vol. 24, Issue 2, pp. 115–119). Elsevier BV. https://doi.org/10.1016/j.fm.2006.07.004 DOI: https://doi.org/10.1016/j.fm.2006.07.004
Taraghikhah, N., Ashtari, S., Asri, N., Shahbazkhani, B., Al-Dulaimi, D., Rostami-Nejad, M., Rezaei-Tavirani, M., Razzaghi, M. R., & Zali, M. R. (2020). An updated overview of spectrum of gluten-related disorders: clinical and diagnostic aspects. In BMC Gastroenterology (Vol. 20, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12876-020-01390-0 DOI: https://doi.org/10.1186/s12876-020-01390-0
Cascella, N. G., Kryszak, D., Bhatti, B., Gregory, P., Kelly, D. L., Mc Evoy, J. P., Fasano, A., & Eaton, W. W. (2009). Prevalence of Celiac Disease and Gluten Sensitivity in the United States Clinical Antipsychotic Trials of Intervention Effectiveness Study Population. In Schizophrenia Bulletin (Vol. 37, Issue 1, pp. 94–100). Oxford University Press (OUP). https://doi.org/10.1093/schbul/sbp055 DOI: https://doi.org/10.1093/schbul/sbp055
Roszkowska, A., Pawlicka, M., Mroczek, A., Bałabuszek, K., & Nieradko-Iwanicka, B. (2019). Non-Celiac Gluten Sensitivity: A Review. In Medicina (Vol. 55, Issue 6, p. 222). MDPI AG. https://doi.org/10.3390/medicina55060222 DOI: https://doi.org/10.3390/medicina55060222
Leonard, M. M., Sapone, A., Catassi, C., & Fasano, A. (2017). Celiac Disease and Nonceliac Gluten Sensitivity. In JAMA (Vol. 318, Issue 7, p. 647). American Medical Association (AMA). https://doi.org/10.1001/jama.2017.9730 DOI: https://doi.org/10.1001/jama.2017.9730
Littlejohns, T. J., Chong, A. Y., Allen, N. E., Arnold, M., Bradbury, K. E., Mentzer, A. J., Soilleux, E. J., & Carter, J. L. (2021). Genetic, lifestyle, and health-related characteristics of adults without celiac disease who follow a gluten-free diet: a population-based study of 124,447 participants. In The American Journal of Clinical Nutrition (Vol. 113, Issue 3, pp. 622–629). Elsevier BV. https://doi.org/10.1093/ajcn/nqaa291
Littlejohns, T. J., Chong, A. Y., Allen, N. E., Arnold, M., Bradbury, K. E., Mentzer, A. J., Soilleux, E. J., & Carter, J. L. (2021). Genetic, lifestyle, and health-related characteristics of adults without celiac disease who follow a gluten-free diet: a population-based study of 124,447 participants. In The American Journal of Clinical Nutrition (Vol. 113, Issue 3, pp. 622–629). Elsevier BV. https://doi.org/10.1093/ajcn/nqaa291 DOI: https://doi.org/10.1093/ajcn/nqaa291
Bouasla, A., & Wójtowicz, A. (2019). Rice-Buckwheat Gluten-Free Pasta: Effect of Processing Parameters on Quality Characteristics and Optimization of Extrusion-Cooking Process. In Foods (Vol. 8, Issue 10, p. 496). MDPI AG. https://doi.org/10.3390/foods8100496 DOI: https://doi.org/10.3390/foods8100496
Khairuddin, M. A. N., & Lasekan, O. (2021). Gluten-Free Cereal Products and Beverages: A Review of Their Health Benefits in the Last Five Years. In Foods (Vol. 10, Issue 11, p. 2523). MDPI AG. https://doi.org/10.3390/foods10112523 DOI: https://doi.org/10.3390/foods10112523
Lu, Z., Zhang, H., Luoto, S., & Ren, X. (2018). Gluten-free living in China: The characteristics, food choices and difficulties in following a gluten-free diet – An online survey. In Appetite (Vol. 127, pp. 242–248). Elsevier BV. https://doi.org/10.1016/j.appet.2018.05.007 DOI: https://doi.org/10.1016/j.appet.2018.05.007
Bascuñán, K. A., Vespa, M. C., & Araya, M. (2016). Celiac disease: understanding the gluten-free diet. In European Journal of Nutrition (Vol. 56, Issue 2, pp. 449–459). Springer Science and Business Media LLC. https://doi.org/10.1007/s00394-016-1238-5 DOI: https://doi.org/10.1007/s00394-016-1238-5
Purwandari, U., Khoiri, A., Muchlis, M., Noriandita, B., Zeni, N., Lisdayana, N., Fauziyah, E. (2014). Textural, cooking quality, and sensory evaluation of gluten-free noodle made from breadfruit, konjac, or pumpkin flour. International Food Research Journal, (Vol. 21, pp. 1623-1627).
Gasparre, N., & Rosell, C. M. (2019). Role of hydrocolloids in gluten free noodles made with tiger nut flour as non-conventional powder. In Food Hydrocolloids (Vol. 97, p. 105194). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2019.105194 DOI: https://doi.org/10.1016/j.foodhyd.2019.105194
Motta Romero, H., Santra, D., Rose, D., & Zhang, Y. (2017). Dough rheological properties and texture of gluten-free pasta based on proso millet flour. In Journal of Cereal Science (Vol. 74, pp. 238–243). Elsevier BV. https://doi.org/10.1016/j.jcs.2017.02.014 DOI: https://doi.org/10.1016/j.jcs.2017.02.014
Padalino, L., Mastromatteo, M., De Vita, P., Maria Ficco, D. B., & Del Nobile, M. A. (2012). Effects of hydrocolloids on chemical properties and cooking quality of gluten‐free spaghetti. In International Journal of Food Science & Technology (Vol. 48, Issue 5, pp. 972–983). Wiley. https://doi.org/10.1111/ijfs.12049 DOI: https://doi.org/10.1111/ijfs.12049
Chauhan, A., Saxena, D. C., & Singh, S. (2017). Effect of hydrocolloids on microstructure, texture and quality characteristics of gluten-free pasta. In Journal of Food Measurement and Characterization (Vol. 11, Issue 3, pp. 1188–1195). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-017-9495-4 DOI: https://doi.org/10.1007/s11694-017-9495-4
Milde, L. B., Chigal, P. S., Olivera, J. E., & González, K. G. (2020). Incorporation of xanthan gum to gluten-free pasta with cassava starch. Physical, textural and sensory attributes. In LWT (Vol. 131, p. 109674). Elsevier BV. https://doi.org/10.1016/j.lwt.2020.109674 DOI: https://doi.org/10.1016/j.lwt.2020.109674
Udachan, I., Sahoo, A. (2017). Effect of hydrocolloids in the development of gluten free brown rice pasta. In International Journal of ChemTech Research (Vol. 10, Issue 6, pp. 407-415). CODEN (USA).
De Arcangelis, E., Cuomo, F., Trivisonno, M. C., Marconi, E., & Messia, M. C. (2020). Gelatinization and pasta making conditions for buckwheat gluten-free pasta. In Journal of Cereal Science (Vol. 95, p. 103073). Elsevier BV. https://doi.org/10.1016/j.jcs.2020.103073 DOI: https://doi.org/10.1016/j.jcs.2020.103073
Losano Richard, P., Steffolani, M. E., Barrera, G. N., & León, A. E. (2022). Effect of alternative hydrocolloids in gluten‐free chickpea pasta. In International Journal of Food Science & Technology (Vol. 57, Issue 8, pp. 4887–4893). Wiley. https://doi.org/10.1111/ijfs.15905 DOI: https://doi.org/10.1111/ijfs.15905
Yazici, G. N., Yilmaz, I., Taspinar, T., & Ozer, M. S. (2023). Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review. In Foods 2023. Foods 2023. MDPI. https://doi.org/10.3390/foods2023-14967 DOI: https://doi.org/10.3390/Foods2023-14967
Rout, S., Gupta, R. K., Jadhav, H. B., Srivastav, P. P., & Annapure, U. (2024). Understanding the role of dietary fibers on gluten-free pasta’s functional quality aspects. In Development of Gluten-Free Pasta (pp. 157–178). Elsevier. https://doi.org/10.1016/b978-0-443-13238-4.00012-5 DOI: https://doi.org/10.1016/B978-0-443-13238-4.00012-5
Melilli, M. G., Buzzanca, C., & Di Stefano, V. (2024). Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. In Carbohydrate Polymers (Vol. 332, p. 121918). Elsevier BV. https://doi.org/10.1016/j.carbpol.2024.121918 DOI: https://doi.org/10.1016/j.carbpol.2024.121918
Foschia, M., Peressini, D., Sensidoni, A., Brennan, M. A., & Brennan, C. S. (2015). How combinations of dietary fibres can affect physicochemical characteristics of pasta. In LWT - Food Science and Technology (Vol. 61, Issue 1, pp. 41–46). Elsevier BV. https://doi.org/10.1016/j.lwt.2014.11.010 DOI: https://doi.org/10.1016/j.lwt.2014.11.010
Nechaev, A. P., Tsyganova, T. B., Butova, S., Nikolaeva, J. V., Tarasova, V. V., & Smirnov, D. A. (2021). Development of a new generation instant pasta based on gluten-free raw materials and dietary fiber. In IOP Conference Series: Earth and Environmental Science (Vol. 640, Issue 2, p. 022006). IOP Publishing. https://doi.org/10.1088/1755-1315/640/2/022006 DOI: https://doi.org/10.1088/1755-1315/640/2/022006
Llavata, B., Albors, A., & Martin-Esparza, M. E. (2019). High Fibre Gluten-Free Fresh Pasta with Tiger Nut, Chickpea and Fenugreek: Technofunctional, Sensory and Nutritional Properties. In Foods (Vol. 9, Issue 1, p. 11). MDPI AG. https://doi.org/10.3390/foods9010011 DOI: https://doi.org/10.3390/foods9010011
Agama‐Acevedo, E., Bello‐Perez, L. A., Pacheco‐Vargas, G., Tovar, J., & Sáyago‐Ayerdi, S. G. (2019). Unripe plantain flour as a dietary fiber source in gluten‐free spaghetti with moderate glycemic index. In Journal of Food Processing and Preservation (Vol. 43, Issue 8). Hindawi Limited. https://doi.org/10.1111/jfpp.14012 DOI: https://doi.org/10.1111/jfpp.14012
Krishnan, J. G., Menon, R., Padmaja, G., Sajeev, M. S., & Moorthy, S. N. (2012). Evaluation of nutritional and physico-mechanical characteristics of dietary fiber-enriched sweet potato pasta. In European Food Research and Technology (Vol. 234, Issue 3, pp. 467–476). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-011-1657-8 DOI: https://doi.org/10.1007/s00217-011-1657-8
Bangar, S. P., Ashogbon, A. O., Dhull, S. B., Thirumdas, R., Kumar, M., Hasan, M., Chaudhary, V., & Pathem, S. (2021). Proso-millet starch: Properties, functionality, and applications. In International Journal of Biological Macromolecules (Vol. 190, pp. 960–968). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2021.09.064 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.064
Witczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems – A review. In Journal of Cereal Science (Vol. 67, pp. 46–57). Elsevier BV. https://doi.org/10.1016/j.jcs.2015.07.007 DOI: https://doi.org/10.1016/j.jcs.2015.07.007
Padalino, L., Conte, A., & Del Nobile, M. (2016). Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. In Foods (Vol. 5, Issue 4, p. 87). MDPI AG. https://doi.org/10.3390/foods5040087 DOI: https://doi.org/10.3390/foods5040087
Vieira, A., Silva, A., Albuquerque, A., Almeida, R., Rodrigues, T., Silva, L., Duarte, M., Cavalcanti-Mata, M., & Rocha, A. (2021). Effects of long-term frozen storage on the quality and acceptance of gluten-free cassava pasta. In Heliyon (Vol. 7, Issue 8, p. e07844). Elsevier BV. https://doi.org/10.1016/j.heliyon.2021.e07844 DOI: https://doi.org/10.1016/j.heliyon.2021.e07844
Foschia, M., Beraldo, P., & Peressini, D. (2016). Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. In Journal of the Science of Food and Agriculture (Vol. 97, Issue 2, pp. 572–577). Wiley. https://doi.org/10.1002/jsfa.7766 DOI: https://doi.org/10.1002/jsfa.7766
Sonia, S., Julianti, E., & Ridwansyah, R. (2020). The Characteristic of Taro Flour Based Pasta with Addition of Modified Starch and Hydrocolloids. In Indonesian Food and Nutrition Progress (Vol. 16, Issue 1, p. 27). Universitas Gadjah Mada. https://doi.org/10.22146/ifnp.45681 DOI: https://doi.org/10.22146/ifnp.45681
Cervini, M., Gruppi, A., Bassani, A., Spigno, G., & Giuberti, G. (2021). Potential Application of Resistant Starch Sorghum in Gluten-Free Pasta: Nutritional, Structural and Sensory Evaluations. In Foods (Vol. 10, Issue 5, p. 908). MDPI AG. https://doi.org/10.3390/foods10050908 DOI: https://doi.org/10.3390/foods10050908
Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., & Masoero, F. (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour. In Food Chemistry (Vol. 175, pp. 43–49). Elsevier BV. https://doi.org/10.1016/j.foodchem.2014.11.127 DOI: https://doi.org/10.1016/j.foodchem.2014.11.127
Sarawong, C., Rodríguez Gutiérrez, Z. C., Berghofer, E., & Schoenlechner, R. (2014). Gluten‐free pasta: effect of green plantain flour addition and influence of starch modification on the functional properties and resistant starch content. In International Journal of Food Science & Technology (Vol. 49, Issue 12, pp. 2650–2658). Wiley. https://doi.org/10.1111/ijfs.12599 DOI: https://doi.org/10.1111/ijfs.12599
Ferreira, S. M. R., de Mello, A. P., de Caldas Rosa dos Anjos, M., Krüger, C. C. H., Azoubel, P. M., & de Oliveira Alves, M. A. (2016). Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. In Food Chemistry (Vol. 191, pp. 147–151). Elsevier BV. https://doi.org/10.1016/j.foodchem.2015.04.085 DOI: https://doi.org/10.1016/j.foodchem.2015.04.085
Mohammadi, M., Zoghi, A., & Mirmahdi, R. S. (2021). Impact of enzymes in development of gluten‐free cereal‐based products. In Journal of Food Processing and Preservation (Vol. 46, Issue 5). Hindawi Limited. https://doi.org/10.1111/jfpp.15295 DOI: https://doi.org/10.1111/jfpp.15295
Ramos, N. J. da S., Rocha, E. B. M., Gusmão, T. A. S., Nascimento, A., Lisboa, H. M., & de Gusmão, R. P. (2023). Optimizing gluten-free pasta quality: The impacts of transglutaminase concentration and kneading time on cooking properties, nutritional value, and rheological characteristics. In LWT (Vol. 189, p. 115485). Elsevier BV. https://doi.org/10.1016/j.lwt.2023.115485 DOI: https://doi.org/10.1016/j.lwt.2023.115485
Yalcin, S., & Basman, A. (2008). Quality characteristics of corn noodles containing gelatinized starch, transglutaminase and gum. In Journal of Food Quality (Vol. 31, Issue 4, pp. 465–479). Wiley. https://doi.org/10.1111/j.1745-4557.2008.00212.x DOI: https://doi.org/10.1111/j.1745-4557.2008.00212.x
Linares-García, L., Repo-Carrasco-Valencia, R., Glorio Paulet, P., & Schoenlechner, R. (2019). Development of gluten-free and egg-free pasta based on quinoa (Chenopdium quinoa Willd) with addition of lupine flour, vegetable proteins and the oxidizing enzyme POx. In European Food Research and Technology (Vol. 245, Issue 10, pp. 2147–2156). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-019-03320-1 DOI: https://doi.org/10.1007/s00217-019-03320-1
Takács, K., Némedi, E., Márta, D., Gelencsér, É., & Kovács, E. (2007). Use of the enzyme transglutaminase for developing glutenfree noodle products from pea flour. In Acta Alimentaria (Vol. 36, Issue 2, pp. 195–205). Akademiai Kiado Zrt. https://doi.org/10.1556/aalim.2007.0008 DOI: https://doi.org/10.1556/AAlim.2007.0008
Campos, B. V. P., & Almeida, E. L. (2021). Gluten-free pasta elaborated with taro flour (Colocasia esculenta): a study of the employ of egg white and transglutaminase on the technological properties. In Research, Society and Development (Vol. 10, Issue 1, p. e52710111454). Research, Society and Development. https://doi.org/10.33448/rsd-v10i1.11454 DOI: https://doi.org/10.33448/rsd-v10i1.11454
Manoj Kumar, C. T., Sabikhi, L., Singh, A. K., Raju, P. N., Kumar, R., & Sharma, R. (2019). Effect of incorporation of sodium caseinate, whey protein concentrate and transglutaminase on the properties of depigmented pearl millet based gluten free pasta. In LWT (Vol. 103, pp. 19–26). Elsevier BV. https://doi.org/10.1016/j.lwt.2018.12.071 DOI: https://doi.org/10.1016/j.lwt.2018.12.071
Kim, A.-N., Rahman, M. S., Lee, K.-Y., & Choi, S.-G. (2021). Superheated steam pretreatment of rice flours: Gelatinization behavior and functional properties during thermal treatment. In Food Bioscience (Vol. 41, p. 101013). Elsevier BV. https://doi.org/10.1016/j.fbio.2021.101013 DOI: https://doi.org/10.1016/j.fbio.2021.101013
Dib, A., Wójtowicz, A., Benatallah, L., Zidoune, M. N., Mitrus, M., Sujak, A. (2018). Optimization of rice-field bean gluten-free pasta improved by the addition of hydrothermally treated rice flour: Optimization of rice-field bean pasta [JB]. Italian Journal of Food Science, 30(2). https://doi.org/10.14674/IJFS-923
Rudra, S. G., Anand, V., Kaur, C., Bhooshan, N., & Bhardwaj, R. (2020). Hydrothermal Treatment to Improve Processing Characteristics of Flour for Gluten‐Free Pasta. In Starch - Stärke (Vol. 72, Issues 9–10). Wiley. https://doi.org/10.1002/star.201900320 DOI: https://doi.org/10.1002/star.201900320
Gandhi, H., Toor, B. S., Kaur, A., & Kaur, J. (2022). Effect of processing treatments on physicochemical, functional and thermal characteristics of lentils (Lens Culinaris). In Journal of Food Measurement and Characterization (Vol. 16, Issue 6, pp. 4603–4614). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-022-01549-1 DOI: https://doi.org/10.1007/s11694-022-01549-1
Marti, A., Caramanico, R., Bottega, G., & Pagani, M. A. (2013). Cooking behavior of rice pasta: Effect of thermal treatments and extrusion conditions. In LWT - Food Science and Technology (Vol. 54, Issue 1, pp. 229–235). Elsevier BV. https://doi.org/10.1016/j.lwt.2013.05.008 DOI: https://doi.org/10.1016/j.lwt.2013.05.008
Cabrera-Chávez, F., Calderón de la Barca, A. M., Islas-Rubio, A. R., Marti, A., Marengo, M., Pagani, M. A., Bonomi, F., & Iametti, S. (2012). Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. In LWT (Vol. 47, Issue 2, pp. 421–426). Elsevier BV. https://doi.org/10.1016/j.lwt.2012.01.040 DOI: https://doi.org/10.1016/j.lwt.2012.01.040
Bouasla, A., Wójtowicz, A., & Zidoune, M. N. (2017). Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. In LWT (Vol. 75, pp. 569–577). Elsevier BV. https://doi.org/10.1016/j.lwt.2016.10.005 DOI: https://doi.org/10.1016/j.lwt.2016.10.005
Sabbatini, S. B. (2014). Design of a Premix for Making Gluten Free Noodles. In International Journal of Nutrition and Food Sciences (Vol. 3, Issue 5, p. 488). Science Publishing Group. https://doi.org/10.11648/j.ijnfs.20140305.29 DOI: https://doi.org/10.11648/j.ijnfs.20140305.29
Baah, R. O., Duodu, K. G., & Emmambux, M. N. (2022). Cooking quality, nutritional and antioxidant properties of gluten-free maize – Orange-fleshed sweet potato pasta produced by extrusion. In LWT (Vol. 162, p. 113415). Elsevier BV. https://doi.org/10.1016/j.lwt.2022.113415 DOI: https://doi.org/10.1016/j.lwt.2022.113415
Silva, E. M., Ascheri, J. L., Ascheri, D. P. (2016). Quality assessment of gluten-free pasta prepared with a brown rice and corn meal blend via thermoplastic extrusion. LWT Food Science & Technology, (Vol. 68, pp. 698-706). https://doi.org/10.1016/j.lwt.2015.12.067 DOI: https://doi.org/10.1016/j.lwt.2015.12.067
Fiorda, F. A., Soares Júnior, M. S., da Silva, F. A., Souto, L. R. F., & Grosmann, M. V. E. (2013). Amaranth flour, cassava starch and cassava bagasse in the production of gluten‐free pasta: technological and sensory aspects. In International Journal of Food Science & Technology (Vol. 48, Issue 9, pp. 1977–1984). Wiley. https://doi.org/10.1111/ijfs.12179 DOI: https://doi.org/10.1111/ijfs.12179
Bento, J. A. C., Bassinello, P. Z., Morais, D. K., Souza Neto, M. A. de, Bataus, L. A. M., Carvalho, R. N., Caliari, M., & Soares Júnior, M. S. (2021). Pre-gelatinized flours of black and carioca bean by-products: Development of gluten-free instant pasta and baked snacks. In International Journal of Gastronomy and Food Science (Vol. 25, p. 100383). Elsevier BV. https://doi.org/10.1016/j.ijgfs.2021.100383 DOI: https://doi.org/10.1016/j.ijgfs.2021.100383
Sofi, S. A., Singh, J., Mir, S. A., & Dar, B. N. (2020). In vitro starch digestibility, cooking quality, rheology and sensory properties of gluten-free pregelatinized rice noodle enriched with germinated chickpea flour. In LWT (Vol. 133, p. 110090). Elsevier BV. https://doi.org/10.1016/j.lwt.2020.110090 DOI: https://doi.org/10.1016/j.lwt.2020.110090
Zavareze, E. da R., Storck, C. R., de Castro, L. A. S., Schirmer, M. A., & Dias, A. R. G. (2010). Effect of heat-moisture treatment on rice starch of varying amylose content. In Food Chemistry (Vol. 121, Issue 2, pp. 358–365). Elsevier BV. https://doi.org/10.1016/j.foodchem.2009.12.036 DOI: https://doi.org/10.1016/j.foodchem.2009.12.036
Wang, L., Zhang, C., Chen, Z., Wang, X., Wang, K., Li, Y., Wang, R., Luo, X., Li, Y., & Li, J. (2018). Effect of annealing on the physico-chemical properties of rice starch and the quality of rice noodles. In Journal of Cereal Science (Vol. 84, pp. 125–131). Elsevier BV. https://doi.org/10.1016/j.jcs.2018.10.004 DOI: https://doi.org/10.1016/j.jcs.2018.10.004
Gu, Y., Qian, X., Sun, B., Wang, X., & Ma, S. (2023). Effects of gelatinization degree and boiling water kneading on the rheology characteristics of gluten-free oat dough. In Food Chemistry (Vol. 404, p. 134715). Elsevier BV. https://doi.org/10.1016/j.foodchem.2022.134715 DOI: https://doi.org/10.1016/j.foodchem.2022.134715
Laleg, K., Cassan, D., Abecassis, J., & Micard, V. (2021). Processing a 100% legume pasta in a classical extruder without agglomeration during mixing. In Journal of Food Science (Vol. 86, Issue 3, pp. 724–729). Wiley. https://doi.org/10.1111/1750-3841.15604 DOI: https://doi.org/10.1111/1750-3841.15604
Ahmed, M. W., Jothi, J. S., Saifullah, M., Hannan, Md. A., & Mohibbullah, Md. (2024). Impact of drying temperature on textural, cooking quality, and microstructure of gluten-free pasta. In Development of Gluten-Free Pasta (pp. 65–110). Elsevier. https://doi.org/10.1016/b978-0-443-13238-4.00010-1 DOI: https://doi.org/10.1016/B978-0-443-13238-4.00010-1
D’Amico, S., Mäschle, J., Jekle, M., Tömösközi, S., Langó, B., & Schoenlechner, R. (2015). Effect of high temperature drying on gluten-free pasta properties. In LWT - Food Science and Technology (Vol. 63, Issue 1, pp. 391–399). Elsevier BV. https://doi.org/10.1016/j.lwt.2015.03.080 DOI: https://doi.org/10.1016/j.lwt.2015.03.080
Ramírez, M., Tenorio, M., Ramírez, C., Jaques, A., Nuñez, H., Simpson, R., & Vega, O. (2019). Optimization of hot-air drying conditions for cassava flour for its application in gluten-free pasta formulation. In Food Science and Technology International (Vol. 25, Issue 5, pp. 414–428). SAGE Publications. https://doi.org/10.1177/1082013219828269 DOI: https://doi.org/10.1177/1082013219828269
The Amaranth Genome. (2021). In D. Adhikary, M. K. Deyholos, & J. P. Délano-Frier (Eds.), Compendium of Plant Genomes. Springer International Publishing. https://doi.org/10.1007/978-3-030-72365-1 DOI: https://doi.org/10.1007/978-3-030-72365-1
Sattar, M., Saeed, F., Afzaal, M., Rasheed, A., Asif, A., Sharif, S., Hussain, M., Asad Ur Rehman, H., Raza, M. A., Munir, H., & Al Jbawi, E. (2024). An overview of the nutritional and therapeutic properties of amaranth. In International Journal of Food Properties (Vol. 27, Issue 1, pp. 263–272). Informa UK Limited. https://doi.org/10.1080/10942912.2024.2304266 DOI: https://doi.org/10.1080/10942912.2024.2304266
Baraniak, J., & Kania-Dobrowolska, M. (2022). The Dual Nature of Amaranth—Functional Food and Potential Medicine. In Foods (Vol. 11, Issue 4, p. 618). MDPI AG. https://doi.org/10.3390/foods11040618 DOI: https://doi.org/10.3390/foods11040618
Zhang, X., Shi, J., Fu, Y., Zhang, T., Jiang, L., & Sui, X. (2023). Structural, nutritional, and functional properties of amaranth protein and its application in the food industry: A review. In Sustainable Food Proteins (Vol. 1, Issue 1, pp. 45–55). Wiley. https://doi.org/10.1002/sfp2.1002
Mystkowska, I., Plażuk, E., Szepeluk, A., & Dmitrowicz, A. (2024). Gluten-containing flours and gluten-free flours as a source of calcium, magnesium, iron and zinc. In Scientific Reports (Vol. 14, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-024-65530-2 DOI: https://doi.org/10.1038/s41598-024-65530-2
Zhu, F. (2023). Amaranth proteins and peptides: Biological properties and food uses. In Food Research International (Vol. 164, p. 112405). Elsevier BV. https://doi.org/10.1016/j.foodres.2022.112405 DOI: https://doi.org/10.1016/j.foodres.2022.112405
Zhang, X., Shi, J., Fu, Y., Zhang, T., Jiang, L., & Sui, X. (2023). Structural, nutritional, and functional properties of amaranth protein and its application in the food industry: A review. In Sustainable Food Proteins (Vol. 1, Issue 1, pp. 45–55). Wiley. https://doi.org/10.1002/sfp2.1002 DOI: https://doi.org/10.1002/sfp2.1002
Lux (née Bantleon), T., Spillmann, F., Reimold, F., Erdös, A., Lochny, A., & Flöter, E. (2023). Physical quality of gluten‐free doughs and fresh pasta made of amaranth. In Food Science & Nutrition (Vol. 11, Issue 6, pp. 3213–3223). Wiley. https://doi.org/10.1002/fsn3.3301 DOI: https://doi.org/10.1002/fsn3.3301
Cárdenas-Hernández, A., Beta, T., Loarca-Piña, G., Castaño-Tostado, E., Nieto-Barrera, J. O., & Mendoza, S. (2016). Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. In Journal of Cereal Science (Vol. 72, pp. 84–90). Elsevier BV. https://doi.org/10.1016/j.jcs.2016.09.014 DOI: https://doi.org/10.1016/j.jcs.2016.09.014
Lawal, O. M., van Stuijvenberg, L., Boon, N., Awolu, O., Fogliano, V., & Linnemann, A. R. (2021). Technological and nutritional properties of amaranth‐fortified yellow cassava pasta. In Journal of Food Science (Vol. 86, Issue 12, pp. 5213–5225). Wiley. https://doi.org/10.1111/1750-3841.15975 DOI: https://doi.org/10.1111/1750-3841.15975
Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., & Berghofer, E. (2010). Functional Properties of Gluten-Free Pasta Produced from Amaranth, Quinoa and Buckwheat. In Plant Foods for Human Nutrition (Vol. 65, Issue 4, pp. 339–349). Springer Science and Business Media LLC. https://doi.org/10.1007/s11130-010-0194-0 DOI: https://doi.org/10.1007/s11130-010-0194-0
Pirzadah, T. B., & Rehman, R. U. (2021). Buckwheat: Forgotten Crop for the Future. CRC Press. https://doi.org/10.1201/9781003089100 DOI: https://doi.org/10.1201/9781003089100
Huda, Md. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M. I., Park, S. U., & Zhou, M. (2021). Treasure from garden: Bioactive compounds of buckwheat. In Food Chemistry (Vol. 335, p. 127653). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.127653 DOI: https://doi.org/10.1016/j.foodchem.2020.127653
Jha, R., Zhang, K., He, Y., Mendler-Drienyovszki, N., Magyar-Tábori, K., Quinet, M., Germ, M., Kreft, I., Meglič, V., Ikeda, K., Chapman, M. A., Janovská, D., Podolska, G., Woo, S.-H., Bruno, S., Georgiev, M. I., Chrungoo, N., Betekhtin, A., & Zhou, M. (2024). Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. In Trends in Food Science & Technology (Vol. 145, p. 104365). Elsevier BV. https://doi.org/10.1016/j.tifs.2024.104365 DOI: https://doi.org/10.1016/j.tifs.2024.104365
Jin, J., Ohanenye, I. C., & Udenigwe, C. C. (2020). Buckwheat proteins: functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 7, pp. 1752–1764). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1847027 DOI: https://doi.org/10.1080/10408398.2020.1847027
Oniszczuk, A., Kasprzak, K., Wójtowicz, A., Oniszczuk, T., & Olech, M. (2019). The Impact of Processing Parameters on the Content of Phenolic Compounds in New Gluten-Free Precooked Buckwheat Pasta. In Molecules (Vol. 24, Issue 7, p. 1262). MDPI AG. https://doi.org/10.3390/molecules24071262 DOI: https://doi.org/10.3390/molecules24071262
Škrobot, D., Pezo, L., Tomić, J., Pestorić, M., Sakač, M., & Mandić, A. (2022). Insights into sensory and hedonic perception of wholegrain buckwheat enriched pasta. In LWT (Vol. 153, p. 112528). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.112528 DOI: https://doi.org/10.1016/j.lwt.2021.112528
Rosa, C. S., Prestes, R. C., Tessele, K., Crauss, M. (2015). Influence of the different addition levels of amaranth flour and rice flour on pasta buckwheat flour. International Food Reserch Journal, (Vol. 22, pp. 691-698).
Sujka, K., Cacak-Pietrzak, G., Sułek, A., Murgrabia, K., & Dziki, D. (2022). Buckwheat Hull-Enriched Pasta: Physicochemical and Sensory Properties. In Molecules (Vol. 27, Issue 13, p. 4065). MDPI AG. https://doi.org/10.3390/molecules27134065 DOI: https://doi.org/10.3390/molecules27134065
Biró, B., Fodor, R., Szedljak, I., Pásztor-Huszár, K., & Gere, A. (2019). Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. In LWT (Vol. 116, p. 108542). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.108542 DOI: https://doi.org/10.1016/j.lwt.2019.108542
Alamprese, C., Casiraghi, E., & Pagani, M. A. (2006). Development of gluten-free fresh egg pasta analogues containing buckwheat. In European Food Research and Technology (Vol. 225, Issue 2, pp. 205–213). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-006-0405-y DOI: https://doi.org/10.1007/s00217-006-0405-y
Wang, J., Li, Y., Li, A., Liu, R. H., Gao, X., Li, D., Kou, X., & Xue, Z. (2021). Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. In Food Research International (Vol. 150, p. 110790). Elsevier BV. https://doi.org/10.1016/j.foodres.2021.110790 DOI: https://doi.org/10.1016/j.foodres.2021.110790
Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Conte, A., & Alessandro Del Nobile, M. (2014). Optimization and characterization of gluten-free spaghetti enriched with chickpea flour. In International Journal of Food Sciences and Nutrition (Vol. 66, Issue 2, pp. 148–158). Informa UK Limited. https://doi.org/10.3109/09637486.2014.959897 DOI: https://doi.org/10.3109/09637486.2014.959897
Güngörmüşler, M., Başınhan, İ., & Üçtuğ, F. G. (2020). Optimum formulation determination and carbon footprint analysis of a novel gluten‐free pasta recipe using buckwheat, teff, and chickpea flours. In Journal of Food Processing and Preservation (Vol. 44, Issue 9). Hindawi Limited. https://doi.org/10.1111/jfpp.14701 DOI: https://doi.org/10.1111/jfpp.14701
de Lima, B. R., Botelho, R. B. A., & Zandonadi, R. P. (2017). Gluten-Free Pasta: Replacing Wheat with Chickpea. In Journal of Culinary Science & Technology (Vol. 17, Issue 1, pp. 1–8). Informa UK Limited. https://doi.org/10.1080/15428052.2017.1394952 DOI: https://doi.org/10.1080/15428052.2017.1394952
Flores‐Silva, P. C., Berrios, J. D. J., Pan, J., Osorio‐Díaz, P., & Bello‐Pérez, L. A. (2014). Gluten‐free spaghetti made with chickpea, unripe plantain and maize flours: functional and chemical properties and starch digestibility. In International Journal of Food Science & Technology (Vol. 49, Issue 9, pp. 1985–1991). Wiley. https://doi.org/10.1111/ijfs.12529 DOI: https://doi.org/10.1111/ijfs.12529
Singh, G., Singh, B., Singh, A., Kumar, V., & Surasani, V. K. R. (2023). Development and characterisation of barley‐based non‐conventional pasta supplemented with chickpea flour. In International Journal of Food Science & Technology (Vol. 59, Issue 2, pp. 1104–1112). Wiley. https://doi.org/10.1111/ijfs.16553 DOI: https://doi.org/10.1111/ijfs.16553
Costantini, M., Summo, C., Faccia, M., Caponio, F., & Pasqualone, A. (2021). Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. In Molecules (Vol. 26, Issue 15, p. 4442). MDPI AG. https://doi.org/10.3390/molecules26154442 DOI: https://doi.org/10.3390/molecules26154442
El-Sohaimy, S. A., Brennan, M., Darwish, A. M. G., & Brennan, C. (2020). Physicochemical, texture and sensorial evaluation of pasta enriched with chickpea flour and protein isolate. In Annals of Agricultural Sciences (Vol. 65, Issue 1, pp. 28–34). Elsevier BV. https://doi.org/10.1016/j.aoas.2020.05.005 DOI: https://doi.org/10.1016/j.aoas.2020.05.005
Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michałowska, A. (2019). The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. In Nutrients (Vol. 11, Issue 6, p. 1242). MDPI AG. https://doi.org/10.3390/nu11061242 DOI: https://doi.org/10.3390/nu11061242
Aranibar, C., Pigni, N. B., Martinez, M., Aguirre, A., Ribotta, P., Wunderlin, D., & Borneo, R. (2018). Utilization of a partially-deoiled chia flour to improve the nutritional and antioxidant properties of wheat pasta. In LWT (Vol. 89, pp. 381–387). Elsevier BV. https://doi.org/10.1016/j.lwt.2017.11.003 DOI: https://doi.org/10.1016/j.lwt.2017.11.003
Menga, V., Amato, M., Phillips, T. D., Angelino, D., Morreale, F., & Fares, C. (2017). Gluten-free pasta incorporating chia (Salvia hispanica L.) as thickening agent: An approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. In Food Chemistry (Vol. 221, pp. 1954–1961). Elsevier BV. https://doi.org/10.1016/j.foodchem.2016.11.151 DOI: https://doi.org/10.1016/j.foodchem.2016.11.151
Levent, H. (2017). Effect of partial substitution of gluten-free flour mixtures with chia (Salvia hispanica L.) flour on quality of gluten-free noodles. In Journal of Food Science and Technology (Vol. 54, Issue 7, pp. 1971–1978). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-017-2633-5 DOI: https://doi.org/10.1007/s13197-017-2633-5
Khatri, M., Singh, A., Singh, R., Kamble, D. B., Dar, A. H., & Sharma, A. (2023). Optimization and evaluation of quinoa and chia based gluten free pasta formulation. In Food and Humanity (Vol. 1, pp. 174–179). Elsevier BV. https://doi.org/10.1016/j.foohum.2023.05.009 DOI: https://doi.org/10.1016/j.foohum.2023.05.009
Kumar, D., Jhariya, N. A. (2013). Nutritional, medicinal and economical importance of corn: A mini review. Journal of Pharmaceutical Sciences, (Vol. 2, pp. 1-6).
Mohammed, A. A. B. A., Hasan, Z., Omran, A. A. B., Kumar, V. V., Elfaghi, A. M., Ilyas, R. A., & Sapuan, S. M. (2022). Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. In Polymers (Vol. 14, Issue 20, p. 4396). MDPI AG. https://doi.org/10.3390/polym14204396 DOI: https://doi.org/10.3390/polym14204396
Bresciani, A., Pagani, M. A., & Marti, A. (2022). Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. In Foods (Vol. 11, Issue 3, p. 256). MDPI AG. https://doi.org/10.3390/foods11030256
Milde Laura, B., Chigal Paola, S., Chiola Zayas María, O. (2018). Nutritional characterization of gluten free non-traditional pasta. International Journal Food Science & Nutrition, (Vol. 3, pp. 19-24).
Giménez, M. A., Drago, S. R., Bassett, M. N., Lobo, M. O., Sammán, N. C. (2016). Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). Food Chemistry, (Vol. 199, pp. 150-6). https://doi.org/10.1016/j.foodchem.2015.11.065 DOI: https://doi.org/10.1016/j.foodchem.2015.11.065
Ungureanu-Iuga, M., Dimian, M., Mironeasa, S. (2020). Development and quality evaluation of gluten-free pasta with grape peels and whey powders. LWT Food Science & Technology, (Vol. 130, p. 109714). https://doi.org/10.1016/j.lwt.2020.109714 DOI: https://doi.org/10.1016/j.lwt.2020.109714
Mirhosseini, H., Abdul Rashid, N. F., Tabatabaee Amid, B., Cheong, K. W., Kazemi, M., & Zulkurnain, M. (2015). Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. In LWT - Food Science and Technology (Vol. 63, Issue 1, pp. 184–190). Elsevier BV. https://doi.org/10.1016/j.lwt.2015.03.078 DOI: https://doi.org/10.1016/j.lwt.2015.03.078
Larrosa, V.J., Lorenzo, G., Zaritzky, N.E., Califano, A.N. (2015.) Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. Journal of Food Engineering, (Vol. 160, pp. 11-18). https://doi.org/10.1016/j.lwt.2020.109714 DOI: https://doi.org/10.1016/j.jfoodeng.2015.03.019
Yulianti, L. E., Sholichah, E., & Indrianti, N. (2019). Addition of Tempeh Flour as a Protein Source in Mixed Flour (Mocaf, Rice, and Corn) for Pasta Product. In IOP Conference Series: Earth and Environmental Science (Vol. 251, p. 012037). IOP Publishing. https://doi.org/10.1088/1755-1315/251/1/012037 DOI: https://doi.org/10.1088/1755-1315/251/1/012037
El-Bialee, N., Saad, A. M., El-Didamony, M. I., & Zahran, G. (2017). Influence of Extrusion-Cooking Conditions on Corn Pasta Quality. In European Journal of Engineering Research and Science (Vol. 2, Issue 3, p. 24). European Open Access Publishing (Europa Publishing). https://doi.org/10.24018/ejers.2017.2.3.30 DOI: https://doi.org/10.24018/ejers.2017.2.3.301
Dib, A., Wójtowicz, A., Benatallah, L., Bouasla, A., & Zidoune, M. N. (2018). Effect of hydrothermal treated corn flour addition on the quality of corn-field bean gluten-free pasta. In A. Szeląg-Sikora (Ed.), BIO Web of Conferences (Vol. 10, p. 02003). EDP Sciences. https://doi.org/10.1051/bioconf/20181002003 DOI: https://doi.org/10.1051/bioconf/20181002003
Camelo-Méndez, G. A., Tovar, J., & Bello-Pérez, L. A. (2018). Influence of blue maize flour on gluten-free pasta quality and antioxidant retention characteristics. In Journal of Food Science and Technology (Vol. 55, Issue 7, pp. 2739–2748). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-018-3196-9 DOI: https://doi.org/10.1007/s13197-018-3196-9
Padalino, L., Mastromatteo, M., Sepielli, G., Nobile, M. A. D. (2011). Formulation Optimization of Gluten-Free Functional Spaghetti Based on Maize Flour and Oat Bran Enriched in b-Glucans. Materials, (Vol. 4, pp. 2119-2135). https://doi.org/10.3390/ma4122119 DOI: https://doi.org/10.3390/ma4122119
Bongianino, N. F., Steffolani, M. E., Morales, C. D., Biasutti, C. A., & León, A. E. (2023). Technological and Sensory Quality of Gluten-Free Pasta Made from Flint Maize Cultivars. In Foods (Vol. 12, Issue 14, p. 2780). MDPI AG. https://doi.org/10.3390/foods12142780 DOI: https://doi.org/10.3390/foods12142780
Bresciani, A., Pagani, M. A., & Marti, A. (2022). Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. In Foods (Vol. 11, Issue 3, p. 256). MDPI AG. https://doi.org/10.3390/foods11030256 DOI: https://doi.org/10.3390/foods11030256
Bolarinwa, I. F., & Oyesiji, O. O. (2021). Gluten free rice-soy pasta: proximate composition, textural properties and sensory attributes. In Heliyon (Vol. 7, Issue 1, p. e06052). Elsevier BV. https://doi.org/10.1016/j.heliyon.2021.e06052 DOI: https://doi.org/10.1016/j.heliyon.2021.e06052
Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W., & Rawdkuen, S. (2017). Effects of protein enrichaent on the properties of rice flour based gluten-free pasta. In LWT (Vol. 80, pp. 378–385). Elsevier BV. https://doi.org/10.1016/j.lwt.2017.02.044 DOI: https://doi.org/10.1016/j.lwt.2017.02.044
Sereewat, P., Suthipinittham, C., Sumathaluk, S., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2015). Cooking properties and sensory acceptability of spaghetti made from rice flour and defatted soy flour. In LWT - Food Science and Technology (Vol. 60, Issue 2, pp. 1061–1067). Elsevier BV. https://doi.org/10.1016/j.lwt.2014.10.001 DOI: https://doi.org/10.1016/j.lwt.2014.10.001
Fradinho, P., Sousa, I., & Raymundo, A. (2018). Functional and thermorheological properties of rice flour gels for gluten‐free pasta applications. In International Journal of Food Science & Technology (Vol. 54, Issue 4, pp. 1109–1120). Wiley. https://doi.org/10.1111/ijfs.14001 DOI: https://doi.org/10.1111/ijfs.14001
Marana, A. I. S., Morris, A., Prinyawiwatkul, W., Xu, Z., & King, J. M. (2023). High‐protein rice flour in the development of gluten‐free pasta. In Journal of Food Science (Vol. 88, Issue 4, pp. 1268–1279). Wiley. https://doi.org/10.1111/1750-3841.16522 DOI: https://doi.org/10.1111/1750-3841.16522
Ribeiro, T. H. S., Bolanho, B. C., Montanuci, F. D., & Ruiz, S. P. (2018). Physicochemical and sensory characterization of gluten-free fresh pasta with addition of passion fruit peel flour. In Ciência Rural (Vol. 48, Issue 12). FapUNIFESP (SciELO). https://doi.org/10.1590/0103-8478cr20180508 DOI: https://doi.org/10.1590/0103-8478cr20180508
Ertas, N. M., Aslan, M., Çevik, A. (2022). Improvement of Structural and Nutritional Quality of Gluten Free Pasta. Journal of Culinary Science & Technology, (Vol. 21, pp. 867-885). https://doi.org/10.1080/15428052.2021.2020198 DOI: https://doi.org/10.1080/15428052.2021.2020198
Gulzar, B., Hussain, S. Z., Naseer, B., & Naik, H. R. (2021). Enhancement of resistant starch content in modified rice flour using extrusion technology. In Cereal Chemistry (Vol. 98, Issue 3, pp. 634–641). Wiley. https://doi.org/10.1002/cche.10407 DOI: https://doi.org/10.1002/cche.10407
Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. In Journal of Cereal Science (Vol. 43, Issue 1, pp. 38–46). Elsevier BV. https://doi.org/10.1016/j.jcs.2005.09.003 DOI: https://doi.org/10.1016/j.jcs.2005.09.003
Guha, M., & Ali, S. Z. (2011). Changes in rheological properties of rice flour during extrusion cooking. In Journal of Texture Studies (Vol. 42, Issue 6, pp. 451–458). Wiley. https://doi.org/10.1111/j.1745-4603.2011.00306.x DOI: https://doi.org/10.1111/j.1745-4603.2011.00306.x
Craine, E. B., & Murphy, K. M. (2020). Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. In Frontiers in Nutrition (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fnut.2020.00126 DOI: https://doi.org/10.3389/fnut.2020.00126
Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. In Food Chemistry (Vol. 299, p. 125161). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.125161 DOI: https://doi.org/10.1016/j.foodchem.2019.125161
Demir, B., & Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. In Journal of Food Science and Technology (Vol. 57, Issue 10, pp. 3884–3892). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-020-04420-7 DOI: https://doi.org/10.1007/s13197-020-04420-7
Demir, B., & Bilgiçli, N. (2020). Utilization of quinoa flour (Chenopodium quinoaWilld.) in gluten-free pasta formulation: Effects on nutritional and sensory properties. In Food Science and Technology International (Vol. 27, Issue 3, pp. 242–250). SAGE Publications. https://doi.org/10.1177/1082013220940092 DOI: https://doi.org/10.1177/1082013220940092
Torres, O. L., Lema, M., & Galeano, Y. V. (2021). Effect of Using Quinoa Flour (Chenopodium quinoa Willd.) on the Physicochemical Characteristics of an Extruded Pasta. In D. Suhandy (Ed.), International Journal of Food Science (Vol. 2021, pp. 1–8). Hindawi Limited. https://doi.org/10.1155/2021/8813354 DOI: https://doi.org/10.1155/2021/8813354
Torres Vargas, O. L., Lema González, M., & Galeano Loaiza, Y. V. (2021). Optimization study of pasta extruded with quinoa flour (Chenopodium quinoa willd). In CyTA - Journal of Food (Vol. 19, Issue 1, pp. 220–227). Informa UK Limited. https://doi.org/10.1080/19476337.2021.1883116 DOI: https://doi.org/10.1080/19476337.2021.1883116
Itusaca-Maldonado, Y. M., Apaza-Humerez, C. R., Pumacahua-Ramos, A., & Mayta Pinto, E. (2024). Technological and textural properties of gluten-free quinoa-based pasta (Chenopodium quinoa Wild). In Heliyon (Vol. 10, Issue 7, p. e28363). Elsevier BV. https://doi.org/10.1016/j.heliyon.2024.e28363 DOI: https://doi.org/10.1016/j.heliyon.2024.e28363
Córdoba-Cerón, D. M., Bravo-Gómez, J. E., Agudelo-Laverde, L. M., Roa-Acosta, D. F., & Nieto-Calvache, J. E. (2023). Techno-functional properties of gluten-free pasta from hyperprotein quinoa flour. In Heliyon (Vol. 9, Issue 8, p. e18539). Elsevier BV. https://doi.org/10.1016/j.heliyon.2023.e18539 DOI: https://doi.org/10.1016/j.heliyon.2023.e18539
Sosa, M., Califano, A., & Lorenzo, G. (2018). Influence of quinoa and zein content on the structural, rheological, and textural properties of gluten-free pasta. In European Food Research and Technology (Vol. 245, Issue 2, pp. 343–353). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-018-3166-5 DOI: https://doi.org/10.1007/s00217-018-3166-5
Córdoba-Cerón, D. M., Carranza-Saavedra, D., Roa-Acosta, D. F., Hoyos-Concha, J. L., & Solanilla-Duque, J. F. (2022). Physical and culinary analysis of long gluten-free extruded pasta based on high protein quinoa flour. In Frontiers in Sustainable Food Systems (Vol. 6). Frontiers Media SA. https://doi.org/10.3389/fsufs.2022.1017324 DOI: https://doi.org/10.3389/fsufs.2022.1017324
Khan, A., Khan, N. A., Bean, S. R., Chen, J., Xin, Z., & Jiao, Y. (2023). Variations in Total Protein and Amino Acids in the Sequenced Sorghum Mutant Library. In Plants (Vol. 12, Issue 8, p. 1662). MDPI AG. https://doi.org/10.3390/plants12081662 DOI: https://doi.org/10.3390/plants12081662
S., I. M., Bean, S. R., loerger, B. P., Hayes, C., Emendack, Y., & Jagadish S. V., K. (2023). Comparative assessment of grain quality in tannin versus non‐tannin sorghums in the sorghum association panel. In Cereal Chemistry (Vol. 100, Issue 3, pp. 663–674). Wiley. https://doi.org/10.1002/cche.10643 DOI: https://doi.org/10.1002/cche.10643
Palavecino, P. M., Ribotta, P. D., León, A. E., & Bustos, M. C. (2018). Gluten‐free sorghum pasta: starch digestibility and antioxidant capacity compared with commercial products. In Journal of the Science of Food and Agriculture (Vol. 99, Issue 3, pp. 1351–1357). Wiley. https://doi.org/10.1002/jsfa.9310 DOI: https://doi.org/10.1002/jsfa.9310
de Oliveira, L. de L., de Orlandin, L. C., de Aguiar, L. A., Queiroz, V. A. V., Zandonadi, R. P., Botelho, R. B. A., & de Alencar Figueiredo, L. F. (2022). Gluten-Free Sorghum Pasta: Composition and Sensory Evaluation with Different Sorghum Hybrids. In Foods (Vol. 11, Issue 19, p. 3124). MDPI AG. https://doi.org/10.3390/foods11193124 DOI: https://doi.org/10.3390/foods11193124
Palavecino, P. M., Bustos, M. C., Heinzmann Alabí, M. B., Nicolazzi, M. S., Penci, M. C., & Ribotta, P. D. (2017). Effect of Ingredients on the Quality of Gluten‐Free Sorghum Pasta. In Journal of Food Science (Vol. 82, Issue 9, pp. 2085–2093). Wiley. https://doi.org/10.1111/1750-3841.13821 DOI: https://doi.org/10.1111/1750-3841.13821
Susanna, S., & Prabhasankar, P. (2013). A study on development of Gluten free pasta and its biochemical and immunological validation. In LWT - Food Science and Technology (Vol. 50, Issue 2, pp. 613–621). Elsevier BV. https://doi.org/10.1016/j.lwt.2012.07.040 DOI: https://doi.org/10.1016/j.lwt.2012.07.040
Omaraliyeva, A., Botbayeva, Z., Agedilova, M., Abilova, M., Nurtayeva, A., & Baishugulova, S. (2022). Development of the recipe composition of gluten-free flour confectionery products based on chickpea flour. In Eastern-European Journal of Enterprise Technologies (Vol. 6, Issue 11 (120), pp. 109–125). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2022.269397 DOI: https://doi.org/10.15587/1729-4061.2022.269397
Guennouni, M., Admou, B., El khoudri, N., Bourrhouat, A., Zogaam, L. G., Elmoumou, L., & Hilali, A. (2021). Gluten contamination in labelled gluten-free, naturally gluten-free and meals in food services in low-, middle- and high-income countries: a systematic review and meta-analysis. In British Journal of Nutrition (Vol. 127, Issue 10, pp. 1528–1542). Cambridge University Press (CUP). https://doi.org/10.1017/s0007114521002488 DOI: https://doi.org/10.1017/S0007114521002488
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.