Upcycling agricultural byproducts into eco-friendly food packaging
DOI:
https://doi.org/10.5219/1949Keywords:
upcycling, agricultural byproducts, eco-friendly, food packaging, sustainabilityAbstract
This investigation looks at the transformative potential of upcycling agricultural waste to make ecologically friendly food packaging. Agricultural wastes, which are frequently ignored, might be valuable resources in reversing the sustainable destiny of the packaging sector. We review recent research on plant-based byproducts, including proteins, polysaccharides, lipids, pigments, and minerals, that are isolated from agricultural waste. Creating edible and (bio)degradable packaging solutions that can include biobased active components, including flavorings, antioxidants, and antimicrobials, can begin with these compounds. Utilizing plant fibers from agricultural waste reduces environmental contamination while increasing packing efficiency. The review concentrates on packaging solutions that are good for the environment, like edible coatings and films with antioxidant and antibacterial qualities and active packaging made of phenolic chemicals. These innovations, derived from various foods and agricultural waste, satisfy customer demand for premium foods with longer shelf lives. A practical way to lessen the excessive use of non-biodegradable plastics is to create edible materials, especially in light of the global push for sustainability. These formulations can enhance food packaging performance since they are made from biowastes and biopolymers. Our comprehensive research synthesizes existing knowledge to shed light on the extraction, processing, and application of agricultural byproducts in packaging materials. The broad spectrum includes regulatory systems, processing techniques, biodegradability parameters, and the properties of various byproducts. By providing an all-encompassing viewpoint, this evaluation draws attention to current achievements and indicates avenues for more research and development. It provides a roadmap for the ecologically friendly upcycling of agricultural waste into sustainable food packaging, which helps to shift the packaging industry's paradigm continuously.
Downloads
Metrics
References
Uthpala, T. G. G., Navaratne, S. B., Thibbotuwawa, A., Jayasinghe, M., & Wanigasinghe, R. S. (2021). Agricultural By-Product Proteins: Emerging Source for Packaging Applications. In International Journal of Food Science and Agriculture (Vol. 5, Issue 3, pp. 355–362). Hill Publishing Group Inc. https://doi.org/10.26855/ijfsa.2021.09.003 DOI: https://doi.org/10.26855/ijfsa.2021.09.003
Das Purkayastha, M., Manhar, A. K., Das, V. K., Borah, A., Mandal, M., Thakur, A. J., & Mahanta, C. L. (2014). Antioxidative, Hemocompatible, Fluorescent Carbon Nanodots from an “End-of-Pipe” Agricultural Waste: Exploring Its New Horizon in the Food-Packaging Domain. In Journal of Agricultural and Food Chemistry (Vol. 62, Issue 20, pp. 4509–4520). American Chemical Society (ACS). https://doi.org/10.1021/jf500138f DOI: https://doi.org/10.1021/jf500138f
Singh, A. K., Kim, J. Y., & Lee, Y. S. (2022). Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. In Molecules (Vol. 27, Issue 21, p. 7513). MDPI AG. https://doi.org/10.3390/molecules27217513 DOI: https://doi.org/10.3390/molecules27217513
Lauer, M. K., & Smith, R. C. (2020). Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. In Comprehensive Reviews in Food Science and Food Safety (Vol. 19, Issue 6, pp. 3031–3083). Wiley. https://doi.org/10.1111/1541-4337.12627 DOI: https://doi.org/10.1111/1541-4337.12627
Soleimanian, Y., Sanou, I., Turgeon, S. L., Canizares, D., & Khalloufi, S. (2021). Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. In Comprehensive Reviews in Food Science and Food Safety (Vol. 21, Issue 1, pp. 371–415). Wiley. https://doi.org/10.1111/1541-4337.12875 DOI: https://doi.org/10.1111/1541-4337.12875
Hamed, I., Jakobsen, A. N., & Lerfall, J. (2021). Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. In Comprehensive Reviews in Food Science and Food Safety (Vol. 21, Issue 1, pp. 198–226). Wiley. https://doi.org/10.1111/1541-4337.12870 DOI: https://doi.org/10.1111/1541-4337.12870
Kozlu, A., & Elmacı, Y. (2021). Aktif Bileşenler ile Zenginleştirilmiş Yenilebilir Film ve Kaplamaların Taze ve İşlem Görmüş Et ve Balık Ürünlerine Uygulanması. In Turkish Journal of Agriculture - Food Science and Technology (Vol. 9, Issue 5, pp. 868–877). Turkish Science and Technology Publishing (TURSTEP). https://doi.org/10.24925/turjaf.v9i5.868-877.4125 DOI: https://doi.org/10.24925/turjaf.v9i5.868-877.4125
Perera, K. Y., Sharma, S., Pradhan, D., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweed Polysaccharide in Food Contact Materials (Active Packaging, Intelligent Packaging, Edible Films, and Coatings). In Foods (Vol. 10, Issue 9, p. 2088). MDPI AG. https://doi.org/10.3390/foods10092088 DOI: https://doi.org/10.3390/foods10092088
Yong, H., & Liu, J. (2021). Active packaging films and edible coatings based on polyphenol‐rich propolis extract: A review. In Comprehensive Reviews in Food Science and Food Safety (Vol. 20, Issue 2, pp. 2106–2145). Wiley. https://doi.org/10.1111/1541-4337.12697 DOI: https://doi.org/10.1111/1541-4337.12697
Ababor, S., Tamiru, M., Alkhtib, A., Wamatu, J., Kuyu, C. G., Teka, T. A., Terefe, L. A., & Burton, E. (2023). The Use of Biologically Converted Agricultural Byproducts in Chicken Nutrition. In Sustainability (Vol. 15, Issue 19, p. 14562). MDPI AG. https://doi.org/10.3390/su151914562 DOI: https://doi.org/10.3390/su151914562
Brandt-Williams, S., Pillet, G. (2003). Fertilizer co-products as agricultural emternalities Quantifying Environmental Services Used in Production of Food. In Biennial Emergy Analysis Conference (pp. 1-16). University of Florida.
Joachimiak-Lechman, K., Selech, J., & Kasprzak, J. (2018). Eco-efficiency analysis of an innovative packaging production: case study. In Clean Technologies and Environmental Policy (Vol. 21, Issue 2, pp. 339–350). Springer Science and Business Media LLC. https://doi.org/10.1007/s10098-018-1639-7 DOI: https://doi.org/10.1007/s10098-018-1639-7
Rodríguez, M. del P., Vázquez-Vélez, E., Martinez, H., & Torres-Islas, A. (2023). Life Cycle Analysis of a Novel Process from the Automotive Industry in Mexico for Recycling Nylon 6,6 into Polymeric Coatings. In Sustainability (Vol. 15, Issue 12, p. 9810). MDPI AG. https://doi.org/10.3390/su15129810 DOI: https://doi.org/10.3390/su15129810
Mandal, P.K.; Choi, K.; Min, S.; Lee, C.-H. Application of Nanotechnology in Food Packaging: An Overview. 2009.
Meherishi, L., Narayana, S. A., & Ranjani, K. S. (2019). Sustainable packaging for supply chain management in the circular economy: A review. In Journal of Cleaner Production (Vol. 237, p. 117582). Elsevier BV. https://doi.org/10.1016/j.jclepro.2019.07.057 DOI: https://doi.org/10.1016/j.jclepro.2019.07.057
Singh, A. K., Itkor, P., Lee, M., Shin, J., & Lee, Y. S. (2022). Promoting sustainable packaging applications in the circular economy by exploring and advancing molded pulp materials for food products: a review. In Critical Reviews in Food Science and Nutrition (Vol. 63, Issue 32, pp. 11010–11025). Informa UK Limited. https://doi.org/10.1080/10408398.2022.2088686 DOI: https://doi.org/10.1080/10408398.2022.2088686
Iacovidou, E., & Gerassimidou, S. (2018). Sustainable Packaging and the Circular Economy: An EU Perspective. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.22488-8 DOI: https://doi.org/10.1016/B978-0-08-100596-5.22488-8
Circular economy for sustainable packaging. Food Science and Technology 2021. A division of Northern Technologies International Corporation.
A Comprehensive Study of the Market Determinants Impacting Sustainable Packaging. International Journal of Sustainable Economies Management 2021.
Lekesiztürk, D., & Oflaç, B. S. (2022). Investigating sustainable packaging practices: a framework approach. In Present Environment and Sustainable Development (pp. 171–186). Editura Universitatii Alexandru Ioan Cuza din Iasi. https://doi.org/10.47743/pesd2022161013 DOI: https://doi.org/10.47743/pesd2022161013
Poovarodom, N., Ponnak, C., & Manatphrom, N. (2011). Comparative Carbon Footprint of Packaging Systems for Tuna Products. In Packaging Technology and Science (Vol. 25, Issue 5, pp. 249–257). Wiley. https://doi.org/10.1002/pts.975 DOI: https://doi.org/10.1002/pts.975
Varžinskas, V., & Markevičiūtė, Z. (2020). Sustainable Food Packaging: Materials and Waste Management Solutions. In Environmental Research, Engineering and Management (Vol. 76, Issue 3, pp. 154–164). Kaunas University of Technology (KTU). https://doi.org/10.5755/j01.erem.76.3.27511 DOI: https://doi.org/10.5755/j01.erem.76.3.27511
Santi, R., Elegir, G., & Del Curto, B. (2020). Designing for sustainable behaviour practices in consumers: a case study on compostable materials for packaging. In Proceedings of the Design Society: DESIGN Conference (Vol. 1, pp. 1647–1656). Cambridge University Press (CUP). https://doi.org/10.1017/dsd.2020.150 DOI: https://doi.org/10.1017/dsd.2020.150
Farias, N. C., Devine, D. M., Fournet, M. B., Pezzoli, R. (2020). Development of sustainable flexible packaging solutions using novel biodegradable and compostable polymer blends. In Bio Innovation a Circular Economy for Plastics (1 p.). AIMPLAS – Instituto.
Bianchi, E., Guidotti, G., Soccio, M., Siracusa, V., Gazzano, M., Salatelli, E., & Lotti, N. (2023). Biobased and Compostable Multiblock Copolymer of Polylactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism. In Biomacromolecules (Vol. 24, Issue 5, pp. 2356–2368). American Chemical Society (ACS). https://doi.org/10.1021/acs.biomac.3c00216 DOI: https://doi.org/10.1021/acs.biomac.3c00216
Roy, R. (2022). Sustainable Packaging Practices Across Various Sectors: Some Innovative Initiatives Under the Spotlight. In Operations and Supply Chain Management: An International Journal (pp. 461–473). OSCM Forum. https://doi.org/10.31387/oscm0510359 DOI: https://doi.org/10.31387/oscm0510359
Jalalipour, H., Ahmadi, M., Jaafarzadeh, N., Morscheck, G., Narra, S., & Nelles, M. (2021). Provision of extended producer responsibility system for products packaging: A case study of Iran. In Waste Management & Research: The Journal for a Sustainable Circular Economy (Vol. 39, Issue 10, pp. 1291–1301). SAGE Publications. https://doi.org/10.1177/0734242x211040327 DOI: https://doi.org/10.1177/0734242X211040327
Pruess, J. T. (2023). Unraveling the complexity of extended producer responsibility policy mix design, implementation, and transfer dynamics in the European Union. In Journal of Industrial Ecology (Vol. 27, Issue 6, pp. 1500–1520). Wiley. https://doi.org/10.1111/jiec.13429 DOI: https://doi.org/10.1111/jiec.13429
Lorang, S., Yang, Z., Zhang, H., Lü, F., & He, P. (2022). Achievements and policy trends of extended producer responsibility for plastic packaging waste in Europe. In Waste Disposal & Sustainable Energy (Vol. 4, Issue 2, pp. 91–103). Springer Science and Business Media LLC. https://doi.org/10.1007/s42768-022-00098-z DOI: https://doi.org/10.1007/s42768-022-00098-z
Müller, G., Hanecker, E., Blasius, K., Seidemann, C., Tempel, L., Sadocco, P., Pozo, B. F., Boulougouris, G., Lozo, B., Jamnicki, S., & Bobu, E. (2012). End‐of‐life Solutions for Fibre and Bio‐based Packaging Materials in Europe. In Packaging Technology and Science (Vol. 27, Issue 1, pp. 1–15). Wiley. https://doi.org/10.1002/pts.2006 DOI: https://doi.org/10.1002/pts.2006
Sastre, R. M., Zeni, C. F., De Paula, I. C., Hauser, G., & Da Conceição, S. (2023). The use of organic residues to develop packaging: tests in molded pulp. In Proceedings of the Design Society (Vol. 3, pp. 3543–3550). Cambridge University Press (CUP). https://doi.org/10.1017/pds.2023.355 DOI: https://doi.org/10.1017/pds.2023.355
Matheus, J. R. V., Dalsasso, R. R., Rebelatto, E. A., Andrade, K. S., Andrade, L. M. de, Andrade, C. J. de, Monteiro, A. R., & Fai, A. E. C. (2023). Biopolymers as green‐based food packaging materials: A focus on modified and unmodified starch‐based films. In Comprehensive Reviews in Food Science and Food Safety (Vol. 22, Issue 2, pp. 1148–1183). Wiley. https://doi.org/10.1111/1541-4337.13107 DOI: https://doi.org/10.1111/1541-4337.13107
Khan, A., & Tandon, P. (2018). Realizing the End-of-life Considerations in the Design of Food Packaging. In Journal of Packaging Technology and Research (Vol. 2, Issue 3, pp. 251–263). Springer Science and Business Media LLC. https://doi.org/10.1007/s41783-018-0041-6 DOI: https://doi.org/10.1007/s41783-018-0041-6
Holt, G. A., Chow, P., Wanjura, J. D., Pelletier, M. G., & Wedegaertner, T. C. (2014). Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. In Industrial Crops and Products (Vol. 52, pp. 627–632). Elsevier BV. https://doi.org/10.1016/j.indcrop.2013.11.003 DOI: https://doi.org/10.1016/j.indcrop.2013.11.003
Ludueña, L. N., Vecchio, A., Stefani, P. M., & Alvarez, V. A. (2013). Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. In Fibers and Polymers (Vol. 14, Issue 7, pp. 1118–1127). Springer Science and Business Media LLC. https://doi.org/10.1007/s12221-013-1118-z DOI: https://doi.org/10.1007/s12221-013-1118-z
Boarino, A., Schreier, A., Leterrier, Y., & Klok, H.-A. (2022). Uniformly Dispersed Poly(lactic acid)-Grafted Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of Poly(lactic acid) Packaging Films. In ACS Applied Polymer Materials (Vol. 4, Issue 7, pp. 4808–4817). American Chemical Society (ACS). https://doi.org/10.1021/acsapm.2c00420 DOI: https://doi.org/10.1021/acsapm.2c00420
Threepopnatkul, P., Wongsuton, K., Jaiaue, C., Rakkietwinai, N., Stittatrakul, A., & Kulsetthanchalee, C. (2020). Effect of Zeolite on Mechanical and Barrier Properties of PBAT Films for Life Extension of Agricultural Products. In Key Engineering Materials (Vol. 861, pp. 176–181). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/kem.861.176 DOI: https://doi.org/10.4028/www.scientific.net/KEM.861.176
Peixoto, A. M., Petronilho, S., Domingues, M. R., Nunes, F. M., Lopes, J., Pettersen, M. K., Grøvlen, M. S., Wetterhus, E. M., Gonçalves, I., & Coimbra, M. A. (2023). Potato Chips Byproducts as Feedstocks for Developing Active Starch-Based Films with Potential for Cheese Packaging. In Foods (Vol. 12, Issue 6, p. 1167). MDPI AG. https://doi.org/10.3390/foods12061167 DOI: https://doi.org/10.3390/foods12061167
Jiang, Y., Yan, C., Wang, K., Shi, D., Liu, Z., & Yang, M. (2019). Super-Toughed PLA Blown Film with Enhanced Gas Barrier Property Available for Packaging and Agricultural Applications. In Materials (Vol. 12, Issue 10, p. 1663). MDPI AG. https://doi.org/10.3390/ma12101663 DOI: https://doi.org/10.3390/ma12101663
Nakagaito, A. N., & Takagi, H. (2018). Easy cellulose nanofiber extraction from residue of agricultural crops. In International Journal of Modern Physics B (Vol. 32, Issue 19, p. 1840080). World Scientific Pub Co Pte Lt. https://doi.org/10.1142/s0217979218400805 DOI: https://doi.org/10.1142/S0217979218400805
Sadovoy, V. V., Selimov, M. A., Shchedrina, T. V.,& Nagdalian, A. A. (2017). Nutritional supplement for control of diabetes. In Journal of Excipients and Food Chemicals (Vol. 8, Issue 2, pp. 31–38). IPEC-Americas.
Gulzar, S., Tagrida, M., Prodpran, T., Li, L., & Benjakul, S. (2023). Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf‐life extension of seafoods—A comprehensive review. In Comprehensive Reviews in Food Science and Food Safety (Vol. 22, Issue 6, pp. 4451–4483). Wiley. https://doi.org/10.1111/1541-4337.13230 DOI: https://doi.org/10.1111/1541-4337.13230
Debnath, M., Sarder, R., Pal, L., & Hubbe, M. A. (2022). Molded pulp products for sustainable packaging: Production rate challenges and product opportunities. In BioResources (Vol. 17, Issue 2, pp. 3810–3870). BioResources. https://doi.org/10.15376/biores.17.2.debnath DOI: https://doi.org/10.15376/biores.17.2.Debnath
Cvek, M., Paul, U. C., Zia, J., Mancini, G., Sedlarik, V., & Athanassiou, A. (2022). Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. In ACS Applied Materials & Interfaces (Vol. 14, Issue 12, pp. 14654–14667). American Chemical Society (ACS). https://doi.org/10.1021/acsami.2c02181 DOI: https://doi.org/10.1021/acsami.2c02181
Lee, K. H., Chun, Y., Jang, Y. W., Lee, S. K., Kim, H. R., Lee, J. H., Kim, S. W., Park, C., & Yoo, H. Y. (2020). Fabrication of Functional Bioelastomer for Food Packaging from Aronia (Aronia melanocarpa) Juice Processing By-Products. In Foods (Vol. 9, Issue 11, p. 1565). MDPI AG. https://doi.org/10.3390/foods9111565 DOI: https://doi.org/10.3390/foods9111565
Simonini, E. (2021). Bio-plastics and technologies for eco-sustainable packaging. Amsdottorato. https://doi.org/10.48676/UNIBO/AMSDOTTORATO/9698
Nida, S., Moses, J. A., & Anandharamakrishnan, C. (2022). 3D Extrusion Printability of Sugarcane Bagasse Blended with Banana Peel for Prospective Food Packaging Applications. In Sugar Tech (Vol. 24, Issue 3, pp. 764–778). Springer Science and Business Media LLC. https://doi.org/10.1007/s12355-021-01095-y DOI: https://doi.org/10.1007/s12355-021-01095-y
Bacoup, F., Mahieu, A., Vitaud, A., Drone, P., Gattin, R., & Leblanc, N. (2019). Various methods of binding light agricultural byproducts. Academic Journal of Civil Engineering, Vol 37 No 2 (2019): Special Issue-ICBBM 2019. https://doi.org/10.26168/ICBBM2019.2
Choudhary, U., Kumar Bhinchhar, B., Kumar Paswan, V., Kharkwal, S., Prakash Yadav, S., & Singh, P. (2022). Utilization of Agro-Industrial Wastes as Edible Coating and Films for Food Packaging Materials. In A Glance at Food Processing Applications. IntechOpen. https://doi.org/10.5772/intechopen.99786 DOI: https://doi.org/10.5772/intechopen.99786
Robertson, G. L. (1992). Food Packaging: Principles and Practice. 676 p. Marcel Dekker Inc.
Mostafa, N. M. M. (2016). Digital Printing as an Alternative Printing System for Short Run Label Production. In مجلة التصميم الدولية (Vol. 6, Issue 1, pp. 151–157). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.12816/0036436 DOI: https://doi.org/10.12816/0036436
Bates, I., Plazonić, I., Dzimbeg-Malcic, V., Banić, D. (2017). Influence of straw pulp in printing substrate on stability of digital prints. In Proceedings of International Conference on Innovative Technologies IN-TECH 2017 (pp. 113–116). Tehnički fakultet Sveučilišta u Rijeci.
Nechai, A., Krvavych, A., & Konechna, R. (2021). Prospects for the use of plant materials in creating biodegradable eco-friendly packaging. In IOP Conference Series: Earth and Environmental Science (Vol. 915, Issue 1, p. 012003). IOP Publishing. https://doi.org/10.1088/1755-1315/915/1/012003 DOI: https://doi.org/10.1088/1755-1315/915/1/012003
Chmyrev, V. P., Polutina, T. N., Moiseev, A. V., Oboturova, N. P., Kolesnikov, R. O., Baklanov, I. S., & Baklanova, O. A. (2022). Analysis of the state of food safety in the Russian federation. In Journal of Hygienic Engineering and Design (Vol. 38, pp. 111–118). Consulting and Training Center KEY.
Šuput, D., Popović, S., Ugarković, J., & Hromiš, N. (2022). Application of life cycle assessment in the packaging sector for the environmental assessment of polymer and biopolymer based materials: A review. In Journal on Processing and Energy in Agriculture (Vol. 26, Issue 2, pp. 75–78). Centre for Evaluation in Education and Science (CEON/CEES). https://doi.org/10.5937/jpea26-39342 DOI: https://doi.org/10.5937/jpea26-39342
Ndizeye, Y., Dongjie, N., Umuhoza, M., Head, S., Mulwa, F., & Collins, M. (2021). Integrated LCA and OPEN LCA-CML baseline analysis on environmental impact associated with the plastic packaging waste management system of Rubavu city Rwanda. In International Journal Of Scientific Advances (Vol. 2, Issue 2). International Journal of Scientific Advances. https://doi.org/10.51542/ijscia.v2i2.13 DOI: https://doi.org/10.51542/ijscia.v2i2.13
Desole, M. P., Aversa, C., Barletta, M., Gisario, A., & Vosooghnia, A. (2021). Life cycle assessment (LCA) of PET and PLA bottles for the packaging of fresh pasteurised milk: The role of the manufacturing process and the disposal scenario. In Packaging Technology and Science (Vol. 35, Issue 2, pp. 135–152). Wiley. https://doi.org/10.1002/pts.2615 DOI: https://doi.org/10.1002/pts.2615
Kakadellis, S., Lee, P.-H., & Harris, Z. M. (2022). Two Birds with One Stone: Bioplastics and Food Waste Anaerobic Co-Digestion. In Environments (Vol. 9, Issue 1, p. 9). MDPI AG. https://doi.org/10.3390/environments9010009 DOI: https://doi.org/10.3390/environments9010009
Chandrajith, A. V. (2022). Verification Study of Food Packaging Materials Recoverable Through Composting and Biodegradation. In International Journal of Conformity Assessment (Vol. 1, Issue 1). International Accreditation Service. https://doi.org/10.55459/ijca/v1i1/av DOI: https://doi.org/10.55459/IJCA/v1i1/AV
Gvozdenko, A. A., Siddiqui, S. A., Blinov, A. V., Golik, A. B., Nagdalian, A. A., Maglakelidze, D. G., Statsenko, E. N., Pirogov, M. A., Blinova, A. A., Sizonenko, M. N., Simonov, A. N., Zhukov, R. B., Kolesnikov, R. O., & Ibrahim, S. A. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-16878-w DOI: https://doi.org/10.1038/s41598-022-16878-w
Itävaara, M., Vikman, M., & Venelampi, O. (1997). Windrow Composting Of Biodegradable Packaging Materials. In Compost Science & Utilization (Vol. 5, Issue 2, pp. 84–92). Informa UK Limited. https://doi.org/10.1080/1065657x.1997.10701877 DOI: https://doi.org/10.1080/1065657X.1997.10701877
Loffredo, E. (2022). Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. In Materials (Vol. 15, Issue 5, p. 1894). MDPI AG. https://doi.org/10.3390/ma15051894 DOI: https://doi.org/10.3390/ma15051894
Siddiqui, S. A., Zannou, O., Bahmid, N. A., Fidan, H., Alamou, A.-F., Nagdalian, А. А., Hassoun, A., Fernando, I., Ibrahim, S. A., & Arsyad, M. (2022). Consumer behavior towards nanopackaging - A new trend in the food industry. In Future Foods (Vol. 6, p. 100191). Elsevier BV. https://doi.org/10.1016/j.fufo.2022.100191 DOI: https://doi.org/10.1016/j.fufo.2022.100191
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.