Investigation of the chemical composition and physicochemical properties of Chlorella vulgaris biomass treated with pulsed discharges technology for potential use in the food industry
DOI:
https://doi.org/10.5219/1803Keywords:
Chlorella vulgaris, protein, gel, food products, pulsed discharges technologyAbstract
The use of chlorella as a dietary supplement has great prospects. Nevertheless, the processing of chlorella is associated with certain difficulties that limit its use on an industrial scale. Problems with the processing are primarily related to the thick and strong cell wall of chlorella (50-100 nm), which is poorly digested by most vertebrate species due to its complex multilayer structure. Our experiments have shown that discharge pulse treatment contributes to the destruction of the strong cell wall of chlorella. The results of atomic force microscopy and the determination of the antioxidant activity of the suspension confirm this. A study of the chemical composition of dried chlorella biomass showed a content of 56.8% protein and 12.6% fat, which causes a high nutritional value of chlorella. The study of the physicochemical properties of the prepared chlorella preparation showed pronounced hydrophilicity of proteins. Observation of gels with different contents of chlorella preparation, formed during heating and subsequent cooling and stored for seven days at +8 °C, showed that the gels do not emit a synergistic liquid. Total gels based on the chlorella preparation are characterized by high stability. Based on the results obtained, we concluded that the preparation based on disintegrated chlorella has a high potential for functional and technological application in food technologies
Downloads
Metrics
References
Cole, M. B., Augustin, M. A., Robertson, M. J., & Manners, J. M. (2018). The science of food security. In npj Science of Food (Vol. 2, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41538-018-0021-9 DOI: https://doi.org/10.1038/s41538-018-0021-9
Zahari, I., Ferawati, F., Helstad, A., Ahlström, C., Östbring, K., Rayner, M., & Purhagen, J. K. (2020). Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. In Foods (Vol. 9, Issue 6, p. 772). MDPI AG. https://doi.org/10.3390/foods9060772 DOI: https://doi.org/10.3390/foods9060772
Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P.-L. (2019). Microalgae: A potential alternative to health supplementation for humans. In Food Science and Human Wellness (Vol. 8, Issue 1, pp. 16–24). Elsevier BV. https://doi.org/10.1016/j.fshw.2019.03.001 DOI: https://doi.org/10.1016/j.fshw.2019.03.001
Siddiqui, S. A., Mahmud, M. M. C., Abdi, G., Wanich, U., Farooqi, M. Q. U., Settapramote, N., Khan, S., & Wani, S. A. (2022). New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. In Journal of Food Biochemistry (Vol. 46, Issue 9). Wiley. https://doi.org/10.1111/jfbc.14185 DOI: https://doi.org/10.1111/jfbc.14185
Siddiqui, S. A., Snoeck, E. R., Tello, A., Alles, M. C., Fernando, I., Saraswati, Y. R., Rahayu, T., Grover, R., Ullah, M. I., Ristow, B., & Nagdalian, A. A. (2022). Manipulation of the black soldier fly larvae (Hermetia illucens; Diptera: Stratiomyidae) fatty acid profile through the substrate. In Journal of Insects as Food and Feed (Vol. 8, Issue 8, pp. 837–855). Wageningen Academic Publishers. https://doi.org/10.3920/jiff2021.0162 DOI: https://doi.org/10.3920/JIFF2021.0162
Tzachor, A., Richards, C. E., & Holt, L. (2021). Future foods for risk-resilient diets. In Nature Food (Vol. 2, Issue 5, pp. 326–329). Springer Science and Business Media LLC. https://doi.org/10.1038/s43016-021-00269-x DOI: https://doi.org/10.1038/s43016-021-00269-x
Anusha Siddiqui, S., Bahmid, N. A., Mahmud, C. M. M., Boukid, F., Lamri, M., & Gagaoua, M. (2022). Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: a critical compilation of a decade of research. In Critical Reviews in Food Science and Nutrition (pp. 1–22). Informa UK Limited. https://doi.org/10.1080/10408398.2022.2036096 DOI: https://doi.org/10.1080/10408398.2022.2036096
Schade, S., & Meier, T. (2020). Distinct microalgae species for food—part 1: a methodological (top-down) approach for the life cycle assessment of microalgae cultivation in tubular photobioreactors. In Journal of Applied Phycology (Vol. 32, Issue 5, pp. 2977–2995). Springer Science and Business Media LLC. https://doi.org/10.1007/s10811-020-02177-2 DOI: https://doi.org/10.1007/s10811-020-02177-2
Caporgno, M. P., & Mathys, A. (2018). Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. In Frontiers in Nutrition (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnut.2018.00058 DOI: https://doi.org/10.3389/fnut.2018.00058
Amorim, M. L., Soares, J., Coimbra, J. S. dos R., Leite, M. de O., Albino, L. F. T., & Martins, M. A. (2020). Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. In Critical Reviews in Food Science and Nutrition (Vol. 61, Issue 12, pp. 1976–2002). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1768046 DOI: https://doi.org/10.1080/10408398.2020.1768046
Wang, Y., Tibbetts, S., & McGinn, P. (2021). Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. In Foods (Vol. 10, Issue 12, p. 3002). MDPI AG. https://doi.org/10.3390/foods10123002 DOI: https://doi.org/10.3390/foods10123002
Panahi, Y., Darvishi, B., Jowzi, N., Beiraghdar, F., & Sahebkar, A. (2015). Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties. In Current Pharmaceutical Design (Vol. 22, Issue 2, pp. 164–173). Bentham Science Publishers Ltd. https://doi.org/10.2174/1381612822666151112145226 DOI: https://doi.org/10.2174/1381612822666151112145226
Hyrslova, I., Krausova, G., Smolova, J., Stankova, B., Branyik, T., Malinska, H., Huttl, M., Kana, A., Curda, L., & Doskocil, I. (2021). Functional Properties of Chlorella vulgaris, Colostrum, and Bifidobacteria, and Their Potential for Application in Functional Foods. In Applied Sciences (Vol. 11, Issue 11, p. 5264). MDPI AG. https://doi.org/10.3390/app11115264 DOI: https://doi.org/10.3390/app11115264
El-Naggar, N. E.-A., Hussein, M. H., Shaaban-Dessuuki, S. A., & Dalal, S. R. (2020). Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-020-59945-w DOI: https://doi.org/10.1038/s41598-020-59945-w
Martins, C. F., Trevisi, P., Coelho, D. F., Correa, F., Ribeiro, D. M., Alfaia, C. M., Pinho, M., Pestana, J. M., Mourato, M. P., Almeida, A. M., Fontes, C. M. G. A., Freire, J. P. B., & Prates, J. A. M. (2022). Influence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned piglet. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-10059-5 DOI: https://doi.org/10.1038/s41598-022-10059-5
Adamakis, I.-D., Lazaridis, P. A., Terzopoulou, E., Torofias, S., Valari, M., Kalaitzi, P., Rousonikolos, V., Gkoutzikostas, D., Zouboulis, A., Zalidis, G., & Triantafyllidis, K. S. (2018). Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. In Environmental Science and Pollution Research (Vol. 25, Issue 23, pp. 23018–23032). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-018-2368-5 DOI: https://doi.org/10.1007/s11356-018-2368-5
Ratomski, P., & Hawrot-Paw, M. (2021). Influence of Nutrient-Stress Conditions on Chlorella vulgaris Biomass Production and Lipid Content. In Catalysts (Vol. 11, Issue 5, p. 573). MDPI AG. https://doi.org/10.3390/catal11050573 DOI: https://doi.org/10.3390/catal11050573
Gerken, H. G., Donohoe, B., & Knoshaug, E. P. (2012). Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. In Planta (Vol. 237, Issue 1, pp. 239–253). Springer Science and Business Media LLC. https://doi.org/10.1007/s00425-012-1765-0 DOI: https://doi.org/10.1007/s00425-012-1765-0
Weber, S., Grande, P. M., Blank, L. M., & Klose, H. (2022). Insights into cell wall disintegration of Chlorella vulgaris. In Md. A. Alam (Ed.), PLOS ONE (Vol. 17, Issue 1, p. e0262500). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0262500 DOI: https://doi.org/10.1371/journal.pone.0262500
Evdokimov, I., Oboturova, N., Nagdalyan, A., Kulikov, Y.-, & Gusevskaya, O. (2015). The study on the influence of the electrohydraulic effect on the diffusion coefficient and the penetration depth of salt into muscle tissues during salting. In Foods and Raw Materials (Vol. 3, Issue 2, pp. 74–81). Kemerovo State University. https://doi.org/10.12737/13121 DOI: https://doi.org/10.12737/13121
GOST R 53160-2008. Animal and vegetable fats and oils. Determination of oxidative stability (accelerated oxidation test). Retrieved from https://docs.cntd.ru/document/1200069472.
GOST 26889-86. Food-stuffs and food additives. General directions for determination of nitrogen content by the Kjeldahl method. Retrieved from https://docs.cntd.ru/document/1200021112.
GOST 13496.15-97. Forages, compound feeds, raw material for compound feeds. Methods for determining the raw fat content. Retrieved from https://docs.cntd.ru/document/1200024338.
Pushkin, S. V., Nagdalian, A. A., Rzhepakovsky, I. V., Povetkin, S. N., Simonov, A. N., & Svetlakova, E. V. (2018). AFM and CT Study of Zophobas morio Morphology and Microstructure. In Entomol Appl Sci Let (Vol. 5, Issue 3, pp. 35–40). Gurgaon.
Tian, S. (1998). The Isolation, Modification and Evaluation of Field Pea Proteins and their Applications in Foods. [Doctoral dissertation, Victoria University of Technology]. 26 p.
Quinn, J. R., & Paton, D. (1979). A practical measurement of water hydration capacity. In Journal of Food Technology (Vol. 2, pp. 1122–1127). Springer Science and Business Media LLC.
Abdel-Karim, O. H., Gheda, S. F., Ismail, G. A., & Abo-Shady, A. M. (2020). Phytochemical Screening and antioxidant activity of Chlorella vulgaris. In Delta Journal of Science (Vol. 41, Issue 1, pp. 81–91). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/djs.2020.139231 DOI: https://doi.org/10.21608/djs.2020.139231
Rzhepakovsky, I. V., Areshidze, D. A., Avanesyan, S. S., Grimm, W. D., Filatova, N. V., Kalinin, A. V., Kochergin, S. G., Kozlova, M. A., Kurchenko, V. P., Sizonenko, M. N., Terentiev, A. A., Timchenko, L. D., Trigub, M. M., Nagdalian, A. A., & Piskov, S. I. (2022). Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. In Molecules (Vol. 27, Issue 3, p. 762). MDPI AG. https://doi.org/10.3390/molecules27030762 DOI: https://doi.org/10.3390/molecules27030762
Song, H., He, M., Gu, C., Wei, D., Liang, Y., Yan, J., & Wang, C. (2018). Extraction Optimization, Purification, Antioxidant Activity, and Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp. In Polymers (Vol. 10, Issue 3, p. 292). MDPI AG. https://doi.org/10.3390/polym10030292 DOI: https://doi.org/10.3390/polym10030292
Møller, S. R., Yi, X., Velásquez, S. M., Gille, S., Hansen, P. L. M., Poulsen, C. P., Olsen, C. E., Rejzek, M., Parsons, H., Yang, Z., Wandall, H. H., Clausen, H., Field, R. A., Pauly, M., Estevez, J. M., Harholt, J., Ulvskov, P., & Petersen, B. L. (2017). Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. In Scientific Reports (Vol. 7, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/srep45341 DOI: https://doi.org/10.1038/srep46774
Kapaun, E., & Reisser, W. (1995). A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). In Planta (Vol. 197, Issue 4). Springer Science and Business Media LLC. https://doi.org/10.1007/bf00191563 DOI: https://doi.org/10.1007/BF00191563
Arunkumar, R., Drummond, C. J., & Greaves, T. L. (2019). FTIR Spectroscopic Study of the Secondary Structure of Globular Proteins in Aqueous Protic Ionic Liquids. In Frontiers in Chemistry (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fchem.2019.00074 DOI: https://doi.org/10.3389/fchem.2019.00074
Peydayesh, M., & Mezzenga, R. (2021). Protein nanofibrils for next generation sustainable water purification. In Nature Communications (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41467-021-23388-2 DOI: https://doi.org/10.1038/s41467-021-23388-2
Zhang, Y., Sharan, S., Rinnan, Å., & Orlien, V. (2021). Survey on Methods for Investigating Protein Functionality and Related Molecular Characteristics. In Foods (Vol. 10, Issue 11, p. 2848). MDPI AG. https://doi.org/10.3390/foods10112848 DOI: https://doi.org/10.3390/foods10112848
Blinov, A. V., Siddiqui, S. A., Blinova, A. A., Khramtsov, A. G., Oboturova, N. P., Nagdalian, А. А., Simonov, A. N., & Ibrahim, S. A. (2022). Analysis of the dispersed composition of milk using photon correlation spectroscopy. In Journal of Food Composition and Analysis (Vol. 108, p. 104414). Elsevier BV. https://doi.org/10.1016/j.jfca.2022.104414 DOI: https://doi.org/10.1016/j.jfca.2022.104414
Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. In Biological Procedures Online (Vol. 11, Issue 1, pp. 32–51). Springer Science and Business Media LLC. https://doi.org/10.1007/s12575-009-9008-x DOI: https://doi.org/10.1007/s12575-009-9008-x
Martins de Oliveira, V., Godoi Contessoto, V. de, Bruno da Silva, F., Zago Caetano, D. L., Jurado de Carvalho, S., & Pereira Leite, V. B. (2018). Effects of pH and Salt Concentration on Stability of a Protein G Variant Using Coarse-Grained Models. In Biophysical Journal (Vol. 114, Issue 1, pp. 65–75). Elsevier BV. https://doi.org/10.1016/j.bpj.2017.11.012 DOI: https://doi.org/10.1016/j.bpj.2017.11.012
Vilg, J. V., & Undeland, I. (2016). pH-driven solubilization and isoelectric precipitation of proteins from the brown seaweed Saccharina latissima—effects of osmotic shock, water volume and temperature. In Journal of Applied Phycology (Vol. 29, Issue 1, pp. 585–593). Springer Science and Business Media LLC. https://doi.org/10.1007/s10811-016-0957-6 DOI: https://doi.org/10.1007/s10811-016-0957-6
Blinov, A. V., Siddiqui, S. A., Nagdalian, A. A., Blinova, A. A., Gvozdenko, A. A., Raffa, V. V., Oboturova, N. P., Golik, A. B., Maglakelidze, D. G., & Ibrahim, S. A. (2021). Investigation of the influence of Zinc-containing compounds on the components of the colloidal phase of milk. In Arabian Journal of Chemistry (Vol. 14, Issue 7, p. 103229). Elsevier BV. https://doi.org/10.1016/j.arabjc.2021.103229 DOI: https://doi.org/10.1016/j.arabjc.2021.103229
Post, A. E., Arnold, B., Weiss, J., & Hinrichs, J. (2012). Effect of temperature and pH on the solubility of caseins: Environmental influences on the dissociation of αS- and β-casein. In Journal of Dairy Science (Vol. 95, Issue 4, pp. 1603–1616). American Dairy Science Association. https://doi.org/10.3168/jds.2011-4641 DOI: https://doi.org/10.3168/jds.2011-4641
Chia, S. R., Chew, K. W., Zaid, H. F. M., Chu, D.-T., Tao, Y., & Show, P. L. (2019). Microalgal Protein Extraction From Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique With Sonication. In Frontiers in Bioengineering and Biotechnology (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fbioe.2019.00396 DOI: https://doi.org/10.3389/fbioe.2019.00396
Fitzsimons, S. M., Mulvihill, D. M., & Morris, E. R. (2007). Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. In Food Hydrocolloids (Vol. 21, Issue 4, pp. 638–644). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2006.07.007 DOI: https://doi.org/10.1016/j.foodhyd.2006.07.007
Waghmare, A. G., Salve, M. K., LeBlanc, J. G., & Arya, S. S. (2016). Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. In Bioresources and Bioprocessing (Vol. 3, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40643-016-0094-8 DOI: https://doi.org/10.1186/s40643-016-0094-8
Meredith, S. C. (2005). Protein Denaturation and Aggregation: Cellular Responses to Denatured and Aggregated Proteins. In Annals of the New York Academy of Sciences (Vol. 1066, Issue 1, pp. 181–221). Wiley. https://doi.org/10.1196/annals.1363.030 DOI: https://doi.org/10.1196/annals.1363.030
Zayas, J. F. (1997). Water Holding Capacity of Proteins. In Functionality of Proteins in Food (pp. 76–133). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59116-7_3 DOI: https://doi.org/10.1007/978-3-642-59116-7_3
Bao, Y., & Ertbjerg, P. (2018). Effects of protein oxidation on the texture and water-holding of meat: a review. In Critical Reviews in Food Science and Nutrition (Vol. 59, Issue 22, pp. 3564–3578). Informa UK Limited. https://doi.org/10.1080/10408398.2018.1498444 DOI: https://doi.org/10.1080/10408398.2018.1498444
Asen, N. D., & Aluko, R. E. (2022). Physicochemical and Functional Properties of Membrane-Fractionated Heat-Induced Pea Protein Aggregates. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fnut.2022.852225 DOI: https://doi.org/10.3389/fnut.2022.852225
Berlin, E., Kliman, P. G., Anderson, B. A., & Pallansch, M. J. (1973). Water Binding in Whey Protein Concentrates. In Journal of Dairy Science (Vol. 56, Issue 8, pp. 984–987). American Dairy Science Association. https://doi.org/10.3168/jds.s0022-0302(73)85293-2 DOI: https://doi.org/10.3168/jds.S0022-0302(73)85293-2
Baugreet, S., Kerry, J. P., Allen, P., Gallagher, E., & Hamill, R. M. (2018). Physicochemical Characteristics of Protein-Enriched Restructured Beef Steaks with Phosphates, Transglutaminase, and Elasticised Package Forming. In Journal of Food Quality (Vol. 2018, pp. 1–11). Hindawi Limited. https://doi.org/10.1155/2018/4737602 DOI: https://doi.org/10.1155/2018/4737602
Montowska, M., & Spychaj, A. (2018). Quantification of species-specific meat proteins in cooked and smoked sausages using infusion mass spectrometry. In Journal of Food Science and Technology (Vol. 55, Issue 12, pp. 4984–4993). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-018-3437-y DOI: https://doi.org/10.1007/s13197-018-3437-y
Siddiqui, S. A., Alvi, T., Biswas, A., Shityakov, S., Gusinskaia, T., Lavrentev, F., Dutta, K., Khan, M. K. I., Stephen, J., & Radhakrishnan, M. (2022). Food gels: principles, interaction mechanisms and its microstructure. In Critical Reviews in Food Science and Nutrition (pp. 1–22). Informa UK Limited. https://doi.org/10.1080/10408398.2022.2103087 DOI: https://doi.org/10.1080/10408398.2022.2103087
Gvozdenko, A.A., Siddiqui, S.A., Blinov, A.V. et al. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. In Scientific Reports (Vol. 12, 12843). Springer Nature. https://doi.org/10.1038/s41598-022-16878-w DOI: https://doi.org/10.1038/s41598-022-16878-w
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.