Polymer selection for microencapsulation of probiotics: impact on viability, stability, and delivery in functional foods for improved manufacturing and product development in the food industry
DOI:
https://doi.org/10.5219/1902Keywords:
Polymer selection, microencapsulation, probiotics, viability, stability, delivery, functional foods, product developmentAbstract
Probiotics have won considerable interest in the food industry because of their health benefits. However, ensuring probiotics' viability, stability, and effective delivery in functional ingredients constitute a major concern. Microencapsulation is a promising method to ensure probiotic viability and stability. The best polymer for microencapsulation of probiotics is a determining factor. This paper presents an overview of the impact of polymer selection on probiotic viability, stability, and delivery in functional foods. It discusses numerous microencapsulation techniques and factors influencing polymer selection. It further explores the consequences of various polymers on probiotic viability, highlighting their protecting mechanisms. Additionally, it examines the role of polymer selection in enhancing probiotic stability during delivery, launch kinetics, storage and processing. The business packages of microencapsulated probiotics in foods and case studies on precise polymer choices for probiotic product improvement are also presented. Finally, we present challenges and future directions in using polymers for probiotic microencapsulation in the food industry. This review thus presents insights to enhance manufacturing tactics and product development within the food industry.
Downloads
Metrics
References
K Gogineni, V., & Morrow, L. E. (2013). Probiotics: Mechanisms of Action and Clinical Applications. In Journal of Probiotics & Health (Vol. 01, Issue 01). OMICS Publishing Group. https://doi.org/10.4172/2329-8901.1000101 DOI: https://doi.org/10.4172/2329-8901.1000101
Agarwal, P., R. Gupta, R., & Gill, I. K. (2018). Importance of biofertilizers in agriculture biotechnology. In Annals of Biological Research (Vol. 9, Issue 3, pp. 1–3). Scholar Research Library.
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. In Advances in Nutrition (Vol. 10, pp. S49–S66). Elsevier BV. https://doi.org/10.1093/advances/nmy063 DOI: https://doi.org/10.1093/advances/nmy063
Vlad, C. C., Păcularu-Burada, B., Vasile, A. M., Milea, Ștefania A., Bahrim, G.-E., Râpeanu, G., & Stănciuc, N. (2022). Upgrading the Functional Potential of Apple Pomace in Value-Added Ingredients with Probiotics. In Antioxidants (Vol. 11, Issue 10, p. 2028). MDPI AG. https://doi.org/10.3390/antiox11102028 DOI: https://doi.org/10.3390/antiox11102028
Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2020). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 9, pp. 2470–2494). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1854169 DOI: https://doi.org/10.1080/10408398.2020.1854169
Sarao, L. K., & Arora, M. (2015). Probiotics, prebiotics, and microencapsulation: A review. In Critical Reviews in Food Science and Nutrition (Vol. 57, Issue 2, pp. 344–371). Informa UK Limited. https://doi.org/10.1080/10408398.2014.887055 DOI: https://doi.org/10.1080/10408398.2014.887055
Broeckx, G., Kiekens, S., Jokicevic, K., Byl, E., Henkens, T., Vandenheuvel, D., Claes, I., Lebeer, S., & Kiekens, F. (2022). Heat-pretreated Lactobacillus rhamnosus GG shows enhanced survival capacity after spray drying. In Drying Technology (Vol. 40, Issue 16, pp. 3602–3613). Informa UK Limited. https://doi.org/10.1080/07373937.2022.2072317 DOI: https://doi.org/10.1080/07373937.2022.2072317
Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., & Ouwehand, A. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. In Microorganisms (Vol. 7, Issue 3, p. 83). MDPI AG. https://doi.org/10.3390/microorganisms7030083 DOI: https://doi.org/10.3390/microorganisms7030083
Santos, M. S., Estevinho, L. M., Carvalho, C. A. L., Morais, J. S., Conceição, A. L. S., Paula, V. B., Magalhães‐Guedes, K., & Almeida, R. C. C. (2019). Probiotic Yogurt with Brazilian Red Propolis: Physicochemical and Bioactive Properties, Stability, and Shelf Life. In Journal of Food Science (Vol. 84, Issue 12, pp. 3429–3436). Wiley. https://doi.org/10.1111/1750-3841.14943 DOI: https://doi.org/10.1111/1750-3841.14943
Champagne, C. P. (2013). Algal hydrocolloids for the production and delivery of probiotic bacteria. In Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 671–693). Elsevier. https://doi.org/10.1533/9780857098689.4.671 DOI: https://doi.org/10.1533/9780857098689.4.671
Singh, I., Kumar, P., & Pillay, V. (2018). Site-specific delivery of polymeric encapsulated microorganisms: a patent evaluation of US20170165201A1. In Expert Opinion on Therapeutic Patents (Vol. 28, Issue 9, pp. 703–708). Informa UK Limited. https://doi.org/10.1080/13543776.2018.1516752 DOI: https://doi.org/10.1080/13543776.2018.1516752
Anwar, Y., Ullah, I., Kamal, T., & Ullah, M. W. (2022). Microencapsulation of Lacticaseibacillus rhamnosus GG for Oral Delivery of Bovine Lactoferrin: Study of Encapsulation Stability, Cell Viability, and Drug Release. In Biomimetics (Vol. 7, Issue 4, p. 152). MDPI AG. https://doi.org/10.3390/biomimetics7040152 DOI: https://doi.org/10.3390/biomimetics7040152
D’Orazio, G., Di Gennaro, P., Boccarusso, M., Presti, I., Bizzaro, G., Giardina, S., Michelotti, A., Labra, M., & La Ferla, B. (2015). Microencapsulation of new probiotic formulations for gastrointestinal delivery: in vitro study to assess viability and biological properties. In Applied Microbiology and Biotechnology (Vol. 99, Issue 22, pp. 9779–9789). Springer Science and Business Media LLC. https://doi.org/10.1007/s00253-015-6853-1 DOI: https://doi.org/10.1007/s00253-015-6853-1
Petrovic, T., Nedovic, V., Dimitrijevic-Brankovic, S., Bugarski, B., & Lacroix, C. (2007). Protection of probiotic microorganisms by microencapsulation. In Chemical Industry and Chemical Engineering Quarterly (Vol. 13, Issue 3, pp. 169–174). National Library of Serbia. https://doi.org/10.2298/ciceq0703169p DOI: https://doi.org/10.2298/CICEQ0703169P
González-Ferrero, C., Irache, J. M., Marín-Calvo, B., Ortiz-Romero, L., Virto-Resano, R., & González-Navarro, C. J. (2020). Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. In Journal of Microencapsulation (Vol. 37, Issue 3, pp. 242–253). Informa UK Limited. https://doi.org/10.1080/02652048.2020.1724203 DOI: https://doi.org/10.1080/02652048.2020.1724203
Su, J., Cai, Y., Tai, K., Guo, Q., Zhu, S., Mao, L., Gao, Y., Yuan, F., & Van der Meeren, P. (2021). High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. In Food & Function (Vol. 12, Issue 1, pp. 70–82). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d0fo01659d DOI: https://doi.org/10.1039/D0FO01659D
Mohammad, N. A., Zaidel, D. N. A., Muhamad, I. I., Hamid, M. A., Yaakob, H., & Jusoh, Y. M. M. (2020). Biopolymeric encapsulation of probiotics for improved release properties in the gastrointestinal digestion system. In IOP Conference Series: Materials Science and Engineering (Vol. 778, Issue 1, p. 012033). IOP Publishing. https://doi.org/10.1088/1757-899x/778/1/012033 DOI: https://doi.org/10.1088/1757-899X/778/1/012033
Penhasi, A., Reuveni, A., & Baluashvili, I. (2021). Microencapsulation May Preserve the Viability of Probiotic Bacteria During a Baking Process and Digestion: A Case Study with Bifidobacterium animalis Subsp. lactis in Bread. In Current Microbiology (Vol. 78, Issue 2, pp. 576–589). Springer Science and Business Media LLC. https://doi.org/10.1007/s00284-020-02292-w DOI: https://doi.org/10.1007/s00284-020-02292-w
Raddatz, G. C., & Menezes, C. R. de. (2021). Microencapsulation and co-encapsulation of bioactive compounds for application in food: challenges and perspectives. In Ciência Rural (Vol. 51, Issue 3). FapUNIFESP (SciELO). https://doi.org/10.1590/0103-8478cr20200616 DOI: https://doi.org/10.1590/0103-8478cr20200616
Prasad, R. V., Momin, J. K., & Prajapati, M. P. (2020). Microencapsulation of Probiotic Lactobacillus Rhamnosus by Extrusion Technique with the Selected Coating Material. In International Journal of Advance Research and Innovation (Vol. 8, Issue 3, pp. 1–6). GLA University. https://doi.org/10.51976/ijari.832001 DOI: https://doi.org/10.51976/ijari.832001
Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. In Journal of Controlled Release (Vol. 162, Issue 1, pp. 56–67). Elsevier BV. https://doi.org/10.1016/j.jconrel.2012.06.003 DOI: https://doi.org/10.1016/j.jconrel.2012.06.003
Kaprellyanz, L., Zykovа, N., Petrosyants, A., & Zykov, A. (2018). Development of biotechnology of getting selenium nanostructures with lactobacillus acidophilus culture. In EUREKA: Life Sciences (Vol. 1, pp. 54–60). OU Scientific Route. https://doi.org/10.21303/2504-5695.2018.00560 DOI: https://doi.org/10.21303/2504-5695.2018.00560
Centurion, F., Basit, A. W., Liu, J., Gaisford, S., Rahim, Md. A., & Kalantar-Zadeh, K. (2021). Nanoencapsulation for Probiotic Delivery. In ACS Nano (Vol. 15, Issue 12, pp. 18653–18660). American Chemical Society (ACS). https://doi.org/10.1021/acsnano.1c09951 DOI: https://doi.org/10.1021/acsnano.1c09951
Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. In Nanoscale Advances (Vol. 3, Issue 10, pp. 2699–2709). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d0na00952k DOI: https://doi.org/10.1039/D0NA00952K
Carrigy, N. B., Ly, A., Harrison, M., Sauvageau, D., Martin, A., Finlay, W. H., & Vehring, R. (2019). Comparison of spray drying and atmospheric spray freeze drying for the production of active anti-tuberculosis bacteriophage D29 dry powder for inhalation. In Respiratory Drug Deliver Eur (Vol. 2, pp. 421–424). RDD Europe 2019.
Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. In Comprehensive Reviews in Food Science and Food Safety (Vol. 19, Issue 2, pp. 857–874). Wiley. https://doi.org/10.1111/1541-4337.12532 DOI: https://doi.org/10.1111/1541-4337.12532
Lovrecich, M., & Rubessa, F. (1998). Morphology and Surface Properties of Blends of Eudragit RS with Different Poly (ethylene Glycol)s. In Pharmaceutical Development and Technology (Vol. 3, Issue 1, pp. 123–129). Informa UK Limited. https://doi.org/10.3109/10837459809028486 DOI: https://doi.org/10.3109/10837459809028486
Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L., & Thorat, R. M. (2012). Microencapsulation: a review. In International Journal of Pharmaceutical Sciences Review and Research (Vol. 3, Issue 2, pp. 509–531). India Publishing Office.
Khode, P. D., & Katre, T. B. (2019). Review of Micrencapsulation: A Review A Novel Approach in Drug Delivery. In Research Journal of Pharmaceutical Dosage Forms and Technology (Vol. 11, Issue 3, p. 191). A and V Publications. https://doi.org/10.5958/0975-4377.2019.00034.x DOI: https://doi.org/10.5958/0975-4377.2019.00034.X
Iqbal, R., Liaqat, A., Jahangir Chughtai, M. F., Tanweer, S., Tehseen, S., Ahsan, S., Nadeem, M., Mehmood, T., Ur Rehman, S. J., Saeed, K., Sameed, N., Aziz, S., Tahir, A. B., & Khaliq, A. (2021). Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. In Journal of Microencapsulation (Vol. 38, Issue 6, pp. 437–458). Informa UK Limited. https://doi.org/10.1080/02652048.2021.1949062 DOI: https://doi.org/10.1080/02652048.2021.1949062
Edwards, D., Hickey, A., Batycky, R., Griel, L., Lipp, M., Dehaan, W., Clarke, R., Hava, D., Perry, J., Laurenzi, B., Curran, A. K., Beddingfield, B. J., Roy, C. J., Devlin, T., & Langer, R. (2020). A New Natural Defense Against Airborne Pathogens. In QRB Discovery (Vol. 1). Cambridge University Press (CUP). https://doi.org/10.1017/qrd.2020.9 DOI: https://doi.org/10.1017/qrd.2020.9
Lanza, V., Greco, V., Bocchieri, E., Sciuto, S., Inturri, R., Messina, L., Vaccaro, S., Bellia, F., & Rizzarelli, E. (2022). Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. In Antioxidants (Vol. 11, Issue 4, p. 664). MDPI AG. https://doi.org/10.3390/antiox11040664 DOI: https://doi.org/10.3390/antiox11040664
Tian, S., Xue, X., Wang, X., & Chen, Z. (2022). Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. In Frontiers in Nutrition (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fnut.2022.982370 DOI: https://doi.org/10.3389/fnut.2022.982370
Chait, Y. A., Gunenc, A. G., Bendali, F. B., & Hosseinian, F. (2021). Functional fermented carob milk: Probiotic variability and polyphenolic profile. In Journal of Food Bioactives (Vol. 14). International Society for Nutraceuticals & Functional Foods (ISNFF). https://doi.org/10.31665/jfb.2021.14273 DOI: https://doi.org/10.31665/JFB.2021.14273
De Giani, A., Sandionigi, A., Zampolli, J., Michelotti, A., Tursi, F., Labra, M., & Di Gennaro, P. (2022). Effects of Inulin-Based Prebiotics Alone or in Combination with Probiotics on Human Gut Microbiota and Markers of Immune System: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects. In Microorganisms (Vol. 10, Issue 6, p. 1256). MDPI AG. https://doi.org/10.3390/microorganisms10061256 DOI: https://doi.org/10.3390/microorganisms10061256
Zhang, X., Hu, H., Huang, X., Yin, Y., Wang, S., Jiao, S., Liu, Z., & Zheng, Y. (2022). Protective Mechanism of a Layer-by-Layer-Assembled Artificial Cell Wall on Probiotics. In The Journal of Physical Chemistry B (Vol. 126, Issue 9, pp. 1933–1940). American Chemical Society (ACS). https://doi.org/10.1021/acs.jpcb.1c09282 DOI: https://doi.org/10.1021/acs.jpcb.1c09282
Kowalska, E., Ziarno, M., Ekielski, A., & Żelaziński, T. (2022). Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. In Molecules (Vol. 27, Issue 10, p. 3321). MDPI AG. https://doi.org/10.3390/molecules27103321 DOI: https://doi.org/10.3390/molecules27103321
Etchepare, M. de A., Barin, J. S., Cichoski, A. J., Jacob-Lopes, E., Wagner, R., Fries, L. L. M., & Menezes, C. R. de. (2015). Microencapsulation of probiotics using sodium alginate. In Ciência Rural (Vol. 45, Issue 7, pp. 1319–1326). FapUNIFESP (SciELO). https://doi.org/10.1590/0103-8478cr20140938 DOI: https://doi.org/10.1590/0103-8478cr20140938
Pradipta, M. S. I., Harimurti, S., & Widodo, W. (2019). Feed Supplementation with Encapsulated Indigenous Probiotic Lactic Acid Bacteria Increased Broiler Chicken Performance. In ASEAN Journal on Science and Technology for Development (Vol. 36, Issue 1, pp. 29–34). UGM Press. https://doi.org/10.29037/ajstd.569 DOI: https://doi.org/10.29037/ajstd.569
Qi, X., Simsek, S., Ohm, J.-B., Chen, B., & Rao, J. (2020). Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: role of chitosan molecular weight. In Soft Matter (Vol. 16, Issue 7, pp. 1877–1887). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c9sm02387a DOI: https://doi.org/10.1039/C9SM02387A
Ogbuewu, I. P., Mabelebele, M., Sebola, N. A., & Mbajiorgu, C. (2022). Bacillus Probiotics as Alternatives to In-feed Antibiotics and Its Influence on Growth, Serum Chemistry, Antioxidant Status, Intestinal Histomorphology, and Lesion Scores in Disease-Challenged Broiler Chickens. In Frontiers in Veterinary Science (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fvets.2022.876725 DOI: https://doi.org/10.3389/fvets.2022.876725
Barajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2021). Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation. In Food Reviews International (Vol. 39, Issue 2, pp. 992–1013). Informa UK Limited. https://doi.org/10.1080/87559129.2021.1928691 DOI: https://doi.org/10.1080/87559129.2021.1928691
Russo, M. I., Abeijón-Mukdsi, M. C., Santacruz, A., Ross, R., Malo, A. L., Gauffin-Cano, P., & Medina, R. B. (2021). Spray dried lactobacilli maintain viability and feruloyl esterase activity during prolonged storage and under gastrointestinal tract conditions. In Journal of Food Science and Technology (Vol. 59, Issue 3, pp. 1202–1210). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-021-05125-1 DOI: https://doi.org/10.1007/s13197-021-05125-1
Viana, C. C. R. (2022). Study of the bacteria-encapsulating agent interaction in microencapsulation of probiotics [Doctoral dissertation, Universidade Federal de Viçosa]. Retrieved from https://www.locus.ufv.br/bitstream/123456789/29972/1/texto%20completo.pdf.
Nguyen, T. H., Kim, J.-S., Kwon, H.-J., & Kang, C.-H. (2023). The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. In Fermentation (Vol. 9, Issue 2, p. 187). MDPI AG. https://doi.org/10.3390/fermentation9020187 DOI: https://doi.org/10.3390/fermentation9020187
Dias, C. O., Scariot, M. C., de Mello Castanho Amboni, R. D., & Arisi, A. C. M. (2020). Application of propidium monoazide coupled with quantitative PCR to evaluate cell viability of Bifidobacterium animalis subsp. lactis in a non-dairy probiotic beverage. In Annals of Microbiology (Vol. 70, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13213-020-01566-9 DOI: https://doi.org/10.1186/s13213-020-01566-9
Moghtaderi, M., Mirzaie, A., Zabet, N., Moammeri, A., Mansoori-Kermani, A., Akbarzadeh, I., Eshrati Yeganeh, F., Chitgarzadeh, A., Bagheri Kashtali, A., & Ren, Q. (2021). Enhanced Antibacterial Activity of Echinacea angustifolia Extract against Multidrug-Resistant Klebsiella pneumoniae through Niosome Encapsulation. In Nanomaterials (Vol. 11, Issue 6, p. 1573). MDPI AG. https://doi.org/10.3390/nano11061573 DOI: https://doi.org/10.3390/nano11061573
Tang, X., Luo, L., Guo, Y., Yang, Z., Zhang, K., He, R., Fan, J., & Yang, W. (2019). Preparation and light-to-heat conversion efficiency of paraffin/graphene aerogel shape-stable phase change materials. In Fullerenes, Nanotubes and Carbon Nanostructures (Vol. 27, Issue 5, pp. 375–381). Informa UK Limited. https://doi.org/10.1080/1536383x.2019.1577239 DOI: https://doi.org/10.1080/1536383X.2019.1577239
Vishwakarma, N., Ganeshpurkar, A., Pandey, V., Dubey, N., & Bansal, D. (2014). Mesalazine–probiotics beads for acetic acid experimental colitis: formulation and characterization of a promising new therapeutic strategy for ulcerative colitis. In Drug Delivery (Vol. 22, Issue 1, pp. 94–99). Informa UK Limited. https://doi.org/10.3109/10717544.2013.872711 DOI: https://doi.org/10.3109/10717544.2013.872711
Gunzburg, W. H., Aung, M. M., Toa, P., Ng, S., Read, E., Tan, W. J., Brandtner, E. M., Dangerfield, J., & Salmons, B. (2020). Efficient Protection of Probiotics for Delivery to the Intestinal tract by Cellulose Sulphate Encapsulation. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-41195/v2 DOI: https://doi.org/10.21203/rs.3.rs-41195/v2
Zhang, C., Wang, C., Zhao, S., & Xiu, Z. (2021). Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. In Biotechnology Letters (Vol. 43, Issue 3, pp. 677–690). Springer Science and Business Media LLC. https://doi.org/10.1007/s10529-020-03055-0 DOI: https://doi.org/10.1007/s10529-020-03055-0
Martínez-Preciado, A. H., Silva-Jara, J. M., Flores-Nuño, B. A., Michel, C. R., Castellanos-Haro, A., & Macías-Rodríguez, M. E. (2021). Microencapsulation by spray-drying of Manilkara zapota pulp and probiotics (Lactobacillus fermentum A15): Assessment of shelf-life in a food matrix. In Revista Mexicana de Ingeniería Química (Vol. 20, Issue 2, pp. 635–648). Universidad Autonoma Metropolitana. https://doi.org/10.24275/rmiq/alim2166 DOI: https://doi.org/10.24275/rmiq/Alim2166
Melchior, S., Marino, M., Innocente, N., Calligaris, S., & Nicoli, M. C. (2020). Effect of different biopolymer‐based structured systems on the survival of probiotic strains during storage and in vitro digestion. In Journal of the Science of Food and Agriculture (Vol. 100, Issue 10, pp. 3902–3909). Wiley. https://doi.org/10.1002/jsfa.10432
Melchior, S., Marino, M., Innocente, N., Calligaris, S., & Nicoli, M. C. (2020). Effect of different biopolymer‐based structured systems on the survival of probiotic strains during storage and in vitro digestion. In Journal of the Science of Food and Agriculture (Vol. 100, Issue 10, pp. 3902–3909). Wiley. https://doi.org/10.1002/jsfa.10432 DOI: https://doi.org/10.1002/jsfa.10432
Srivastava, Y., Semwal, A. D., & Sharma, G. K. (2013). Application of Various Chemical and Mechanical Microencapsulation techniques in Food Sector-A Review. In International Journal of Food and Fermentation Technology (Vol. 3, Issue 1, p. 1). New Delhi Publishers. https://doi.org/10.5958/j.2277-9396.3.1.001 DOI: https://doi.org/10.5958/j.2277-9396.3.1.001
Anand, S., Beniwal, A., Siddharth Singh, K., & Aggarwa, D. (2018). Significance of probiotic encapsulation and deficiencies within. In The Pharma Innov Journal (Vol. 7, pp. 434-439). AkiNik Publications.
Huan, R., Zhai, Z., An, J., Ma, X., & Hao, Y. (2022). Malic Acid Protects Lacticaseibacillus paracasei L9 from Glycodeoxycholic Acid Stress via the Malolactic Enzyme Pathway. In Journal of Agricultural and Food Chemistry (Vol. 70, Issue 29, pp. 9007–9016). American Chemical Society (ACS). https://doi.org/10.1021/acs.jafc.2c02453 DOI: https://doi.org/10.1021/acs.jafc.2c02453
Sohail, A. (2011). Microencapsulation of probiotics and pharmaceuticals in alginate microbeads by a novel impinging technology [Doctoral dissertation, The University of Queensland]. Retrieved from https://espace.library.uq.edu.au/view/UQ:266522.
Mooranian, A., Jones, M., Ionescu, C. M., Walker, D., Wagle, S. R., Kovacevic, B., Chester, J., Foster, T., Johnston, E., Mikov, M., & Al-Salami, H. (2022). Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. In Therapeutic Delivery (Vol. 13, Issue 1, pp. 51–65). Future Science Ltd. https://doi.org/10.4155/tde-2021-0067 DOI: https://doi.org/10.4155/tde-2021-0067
Shishir, M. R. I., Suo, H., Taip, F. S., Ahmed, M., Xiao, J., Wang, M., Chen, F., & Cheng, K.-W. (2023). Seed mucilage-based advanced carrier systems for food and nutraceuticals: fabrication, formulation efficiency, recent advancement, challenges, and perspectives. In Critical Reviews in Food Science and Nutrition (pp. 1–23). Informa UK Limited. https://doi.org/10.1080/10408398.2023.2188564 DOI: https://doi.org/10.1080/10408398.2023.2188564
Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2013). A Review of the Advancements in Probiotic Delivery: Conventional vs. Non-conventional Formulations for Intestinal Flora Supplementation. In AAPS PharmSciTech (Vol. 15, Issue 1, pp. 29–43). Springer Science and Business Media LLC. https://doi.org/10.1208/s12249-013-0027-1 DOI: https://doi.org/10.1208/s12249-013-0027-1
Badi, N., Theodore, A. M., Alghamdi, S. A., Al-Aoh, H. A., Lakhouit, A., Singh, P. K., Norrrahim, M. N. F., & Nath, G. (2022). The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. In Polymers (Vol. 14, Issue 15, p. 3101). MDPI AG. https://doi.org/10.3390/polym14153101 DOI: https://doi.org/10.3390/polym14153101
Albadran, H. A., Monteagudo-Mera, A., Khutoryanskiy, V. V., & Charalampopoulos, D. (2020). Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. In Applied Microbiology and Biotechnology (Vol. 104, Issue 13, pp. 5749–5757). Springer Science and Business Media LLC. https://doi.org/10.1007/s00253-020-10632-w DOI: https://doi.org/10.1007/s00253-020-10632-w
Tsapko, Yu. V., & Horbachova, O. Yu. (2021). Establishment of moisture diffusion regularities through the polymer shell of thermally modified wood. In Ukrainian Journal of Forest and Wood Science (Vol. 12, Issue 1, pp. 41–47). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/forest2021.01.005 DOI: https://doi.org/10.31548/forest2021.01.005
Thakur, J., & Borah, A. (2021). Microcapsules of bioactive compounds from fruits and vegetables waste and their utilization: A review. In The Pharma Innovation (Vol. 10, Issue 5, pp. 151–157). AkiNik Publications. https://doi.org/10.22271/tpi.2021.v10.i5c.6191 DOI: https://doi.org/10.22271/tpi.2021.v10.i5c.6191
Krasaekoopt, W. (2013). Microencapsulation of probiotics in hydrocolloid gel matrices: a review. In Agro Food Industry Hi-Tech (Vol. 24, Issue 2, pp. 76–83). TeknoScienze Publisher.
Massounga Bora, A. F., Li, X., Zhu, Y., & Du, L. (2018). Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. In Probiotics and Antimicrobial Proteins (Vol. 11, Issue 4, pp. 1330–1339). Springer Science and Business Media LLC. https://doi.org/10.1007/s12602-018-9464-1 DOI: https://doi.org/10.1007/s12602-018-9464-1
Campana, R., Federici, S., Ciandrini, E., & Baffone, W. (2012). Antagonistic Activity of Lactobacillus acidophilus ATCC 4356 on the Growth and Adhesion/Invasion Characteristics of Human Campylobacter jejuni. In Current Microbiology (Vol. 64, Issue 4, pp. 371–378). Springer Science and Business Media LLC. https://doi.org/10.1007/s00284-012-0080-0 DOI: https://doi.org/10.1007/s00284-012-0080-0
Jamil, M., Hussain, Gul, J., Harman, Y., Ahmed, A., Nawz, & S., Saddam, M. Role of probiotics in control of avian coccidiosis. In British Journal of Poultry Sciences (Vol. 6, Issue 2, pp. 26–28). International Digital Organization for Scientific Information.
McDowell, A.R. (2018). Optimally lyophilized Lactobacillus plantarum SNUG 12071 survival under storage and gastrointestinal conditions. [Diploma theses, Seoul National University]. Retrieved from https://hdl.handle.net/10371/141941.
Bora, P. S. (2009). Physicochemical Properties and Excipient Compatibility Studies of Probiotic Bacillus coagulans Spores. In Scientia Pharmaceutica (Vol. 77, Issue 3, pp. 625–637). MDPI AG. https://doi.org/10.3797/scipharm.0904-01 DOI: https://doi.org/10.3797/scipharm.0904-01
Khodashenas, M., & Jouki, M. (2020). Optimization of stabilized probiotic Doogh formulation by edible gums and response surface methodology: assessment of stability, viability and organoleptic attributes. In Journal of Food Science and Technology (Vol. 57, Issue 9, pp. 3201–3210). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-020-04351-3 DOI: https://doi.org/10.1007/s13197-020-04351-3
Miranda, J. S., Pereira, C. V. de A. C., Andrade, M. E. de, Vargas, S. O. E., Oliveira, M. M. de, Lima, D. C. N. de, Júnior, B. R. de C. L., Ferreira, D. R., & Martins, M. L. (2022). Impact of adding milk whey, probiotic and prebiotic in passion fruit drinks / Impacto da adição de soro, probiótico e prebiótico em bebidas de maracujá. In Brazilian Journal of Development (Vol. 8, Issue 4, pp. 30484–30504). South Florida Publishing LLC. https://doi.org/10.34117/bjdv8n4-500 DOI: https://doi.org/10.34117/bjdv8n4-500
da Silva, T. M. (2016). Microencapsulação de Bifidobacterium lactis e Lactobacillus acidophilus por coacervação complexa: estudo da produção, caracterização e viabilidade. [Doctoral dissertation, Universidade Federal de Santa Maria]. Retrieved from http://repositorio.ufsm.br/handle/1/14474.
Rodrigues, F. J., Omura, M. H., Cedran, M. F., Dekker, R. F. H., Barbosa-Dekker, A. M., & Garcia, S. (2017). Effect of natural polymers on the survival ofLactobacillus caseiencapsulated in alginate microspheres. In Journal of Microencapsulation (Vol. 34, Issue 5, pp. 431–439). Informa UK Limited. https://doi.org/10.1080/02652048.2017.1343872 DOI: https://doi.org/10.1080/02652048.2017.1343872
Veiga, P., Suez, J., Derrien, M., & Elinav, E. (2020). Moving from probiotics to precision probiotics. In Nature Microbiology (Vol. 5, Issue 7, pp. 878–880). Springer Science and Business Media LLC. https://doi.org/10.1038/s41564-020-0721-17 DOI: https://doi.org/10.1038/s41564-020-0721-1
Escobar-Puentes, A. A., Olivas-Aguirre, F. J., Santiago-López, L., Hernández-Mendoza, A., González-Córdova, A. F., Vallejo-Cordoba, B., & Wall-Medrano, A. (2022). Encapsulation of probiotics. In Probiotics (pp. 185–208). Elsevier. https://doi.org/10.1016/b978-0-323-85170-1.00002-6 DOI: https://doi.org/10.1016/B978-0-323-85170-1.00002-6
Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T., & Chen, E. Y.-X. (2021). Bio-based polymers with performance-advantaged properties. In Nature Reviews Materials (Vol. 7, Issue 2, pp. 83–103). Springer Science and Business Media LLC. https://doi.org/10.1038/s41578-021-00363-3 DOI: https://doi.org/10.1038/s41578-021-00363-3
Siddiqui, S. A., Pahmeyer, M. J., Mehdizadeh, M., Nagdalian, A. A., Oboturova, N. P., & Taha, A. (2022). Consumer Behavior and Industry Implications. In The Age of Clean Label Foods (pp. 209–247). Springer International Publishing. https://doi.org/10.1007/978-3-030-96698-0_7 DOI: https://doi.org/10.1007/978-3-030-96698-0_7
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.