Seaweed-based films for sustainable food packaging: properties, incorporation of essential oils, applications, and future directions
DOI:
https://doi.org/10.5219/1908Keywords:
seaweed-based films, sustainable packaging, food packaging, biodegradability, renewable sourcing, barrier properties, essential oilsAbstract
Seaweed-based films have emerged as a promising solution for sustainable food packaging due to their renewable sourcing, biodegradability, and functional properties. This review provides an in-depth analysis of seaweed-based films, focusing on their properties, incorporation of essential oils, applications in food packaging, and future directions. The advantages of seaweed-based films include their renewable and abundant source, biodegradability, and favorable barrier properties. The review explores the physical and mechanical properties, barrier properties, and safety considerations of seaweed-based films. Additionally, it discusses the incorporation of essential oils into seaweed-based films and their potential benefits. Current and potential applications of seaweed-based films in food packaging, ranging from fresh produce to dairy products, are examined, along with the advantages and challenges associated with their use. A comparison with other sustainable packaging options is provided. Furthermore, the review highlights future research directions in developing seaweed-based films, such as improving mechanical properties, extending shelf life, scaling up production, reducing costs, and innovation in formulation. Overall, seaweed-based films offer a promising and sustainable alternative for food packaging, with ongoing research and development driving their advancement and potential for a more environmentally friendly packaging industry.
Downloads
Metrics
References
Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. In Trends in Food Science & Technology (Vol. 22, Issue 6, pp. 292–303). Elsevier BV. https://doi.org/10.1016/j.tifs.2011.02.004 DOI: https://doi.org/10.1016/j.tifs.2011.02.004
Carina, D., Sharma, S., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweeds polysaccharides in active food packaging: A review of recent progress. In Trends in Food Science & Technology (Vol. 110, pp. 559–572). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.02.022 DOI: https://doi.org/10.1016/j.tifs.2021.02.022
Lim, C., Yusoff, S., Ng, C. G., Lim, P. E., & Ching, Y. C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 5, p. 105895). Elsevier BV. https://doi.org/10.1016/j.jece.2021.105895
Abdul Khalil, H. P. S., Saurabh, C. K., Tye, Y. Y., Lai, T. K., Easa, A. M., Rosamah, E., Fazita, M. R. N., Syakir, M. I., Adnan, A. S., Fizree, H. M., Aprilia, N. A. S., & Banerjee, A. (2017). Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. In Renewable and Sustainable Energy Reviews (Vol. 77, pp. 353–362). Elsevier BV. https://doi.org/10.1016/j.rser.2017.04.025
Walford, L. A., & Smith, G. M. (1944). Marine Algae of the Monterey Peninsula, California. In Copeia (Vol. 1944, Issue 3, p. 195). JSTOR. https://doi.org/10.2307/1437833 DOI: https://doi.org/10.2307/1437833
Suárez-Rodríguez, M., López-Rull, I., & Macías Garcia, C. (2013). Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? In Biology Letters (Vol. 9, Issue 1, p. 20120931). The Royal Society. https://doi.org/10.1098/rsbl.2012.0931 DOI: https://doi.org/10.1098/rsbl.2012.0931
Dehaut, A., Hermabessiere, L., & Duflos, G. (2019). Current frontiers and recommendations for the study of microplastics in seafood. In TrAC Trends in Analytical Chemistry (Vol. 116, pp. 346–359). Elsevier BV. https://doi.org/10.1016/j.trac.2018.11.011 DOI: https://doi.org/10.1016/j.trac.2018.11.011
Xu, S., Ma, J., Ji, R., Pan, K., & Miao, A.-J. (2020). Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. In Science of The Total Environment (Vol. 703, p. 134699). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2019.134699 DOI: https://doi.org/10.1016/j.scitotenv.2019.134699
Maes, T., Barry, J., Leslie, H. A., Vethaak, A. D., Nicolaus, E. E. M., Law, R. J., Lyons, B. P., Martinez, R., Harley, B., & Thain, J. E. (2018). Below the surface: Twenty-five years of seafloor litter monitoring in coastal seas of North West Europe (1992–2017). In Science of The Total Environment (Vol. 630, pp. 790–798). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2018.02.245 DOI: https://doi.org/10.1016/j.scitotenv.2018.02.245
Vickers, N. J. (2017). Animal Communication: When I’m Calling You, Will You Answer Too? In Current Biology (Vol. 27, Issue 14, pp. R713–R715). Elsevier BV. https://doi.org/10.1016/j.cub.2017.05.064 DOI: https://doi.org/10.1016/j.cub.2017.05.064
Ita-Nagy, D., Vázquez-Rowe, I., Kahhat, R., Chinga-Carrasco, G., & Quispe, I. (2020). Reviewing environmental life cycle impacts of biobased polymers: current trends and methodological challenges. In The International Journal of Life Cycle Assessment (Vol. 25, Issue 11, pp. 2169–2189). Springer Science and Business Media LLC. https://doi.org/10.1007/s11367-020-01829-2 DOI: https://doi.org/10.1007/s11367-020-01829-2
Siddiqui, S. A., Zannou, O., Bahmid, N. A., Fidan, H., Alamou, A.-F., Nagdalian, А. А., Hassoun, A., Fernando, I., Ibrahim, S. A., & Arsyad, M. (2022). Consumer behavior towards nanopackaging - A new trend in the food industry. In Future Foods (Vol. 6, p. 100191). Elsevier BV. https://doi.org/10.1016/j.fufo.2022.100191. DOI: https://doi.org/10.1016/j.fufo.2022.100191
Lambert, S., & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. In Chemical Society Reviews (Vol. 46, Issue 22, pp. 6855–6871). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c7cs00149e DOI: https://doi.org/10.1039/C7CS00149E
Tan, I. S., Lam, M. K., Foo, H. C. Y., Lim, S., & Lee, K. T. (2020). Advances of macroalgae biomass for the third generation of bioethanol production. In Chinese Journal of Chemical Engineering (Vol. 28, Issue 2, pp. 502–517). Elsevier BV. https://doi.org/10.1016/j.cjche.2019.05.012 DOI: https://doi.org/10.1016/j.cjche.2019.05.012
Abdul Khalil, H. P. S., Tye, Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., Nurul Fazita, M. R., Mohd Hafiidz, J., Banerjee, A., & Syakir, M. I. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. In Express Polymer Letters (Vol. 11, Issue 4, pp. 244–265). Department of Polymer Engineering, Scientific Society of Mechanical Engineering. https://doi.org/10.3144/expresspolymlett.2017.26 DOI: https://doi.org/10.3144/expresspolymlett.2017.26
García-Casal, M. N., Pereira, A. C., Leets, I., Ramírez, J., & Quiroga, M. F. (2007). High Iron Content and Bioavailability in Humans from Four Species of Marine Algae ,. In The Journal of Nutrition (Vol. 137, Issue 12, pp. 2691–2695). Elsevier BV. https://doi.org/10.1093/jn/137.12.2691 DOI: https://doi.org/10.1093/jn/137.12.2691
Abbott, I. and G. Hollenberg, Marine algae of California Stanford University press. 1976, Stanford, California.
Thomsen, M., & Zhang, X. (2020). Life cycle assessment of macroalgal ecoindustrial systems. In Sustainable Seaweed Technologies (pp. 663–707). Elsevier. https://doi.org/10.1016/b978-0-12-817943-7.00023-8 DOI: https://doi.org/10.1016/B978-0-12-817943-7.00023-8
Visch, W., Kononets, M., Hall, P. O. J., Nylund, G. M., & Pavia, H. (2020). Environmental impact of kelp (Saccharina latissima) aquaculture. In Marine Pollution Bulletin (Vol. 155, p. 110962). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2020.110962 DOI: https://doi.org/10.1016/j.marpolbul.2020.110962
Ebrahimzadeh, S., Biswas, D., Roy, S., & McClements, D. J. (2023). Incorporation of essential oils in edible seaweed-based films: A comprehensive review. In Trends in Food Science & Technology (Vol. 135, pp. 43–56). Elsevier BV. https://doi.org/10.1016/j.tifs.2023.03.015
Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N., & Critchley, A. T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. In European Journal of Phycology (Vol. 52, Issue 4, pp. 391–406). Informa UK Limited. https://doi.org/10.1080/09670262.2017.1365175 DOI: https://doi.org/10.1080/09670262.2017.1365175
Cai, J., Lovatelli, A., Gamarro, E. G., Geehan, J., Lucente, D., Mair, G., Mioa, W., Reantaso, M., Roubach, R., Yuan, X., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffeay, S., Tauati, M., Hurtado, A., Potin, P., & Przybyla, C. (2021). Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. In FAO Fisheries and Aquaculture Circular (Issue 1229, p. 48). FAO.
Ferdouse, F., Holdt, S. L., Smith, R., Murúa, P., & Yang, Z. (2018). The global status of seaweed production, trade and utilization. In Globefish Research Programme (Vol. 124, p. 124). FAO.
Rinaudo, M. (2014). Biomaterials based on a natural polysaccharide: alginate. In TIP (Vol. 17, Issue 1, pp. 92–96). Universidad Nacional Autonoma de Mexico. https://doi.org/10.1016/s1405-888x(14)70322-5 DOI: https://doi.org/10.1016/S1405-888X(14)70322-5
Zhang, C., Show, P.-L., & Ho, S.-H. (2019). Progress and perspective on algal plastics – A critical review. In Bioresource Technology (Vol. 289, p. 121700). Elsevier BV. https://doi.org/10.1016/j.biortech.2019.121700 DOI: https://doi.org/10.1016/j.biortech.2019.121700
Pacheco, D., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. M. M. (2022). Seaweed-Based Polymers from Sustainable Aquaculture to “Greener” Plastic Products. In Sustainable Global Resources Of Seaweeds Volume 1 (pp. 591–602). Springer International Publishing. https://doi.org/10.1007/978-3-030-91955-9_31 DOI: https://doi.org/10.1007/978-3-030-91955-9_31
Shravya, S., Vybhava Lakshmi, N., Pooja, P., Kishore Kumar, C. M., & Sadashiva Murthy, B. M. (2021). Seaweed a sustainable source for bioplastic: a review. In International Research Journal of Modernization in Engineering Technology and Science (Vol. 3, Issue 7, pp. 1405–1415). MultiCraft.
Lim, C., Yusoff, S., Ng, C. G., Lim, P. E., & Ching, Y. C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 5, p. 105895). Elsevier BV. https://doi.org/10.1016/j.jece.2021.105895 DOI: https://doi.org/10.1016/j.jece.2021.105895
Albertos, I., Martin-Diana, A. B., Burón, M., & Rico, D. (2019). Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. In Food Packaging and Shelf Life (Vol. 22, p. 100382). Elsevier BV. https://doi.org/10.1016/j.fpsl.2019.100382
Aragão Rebouças Júnior, J. S., & Turan, G. (2022). Biodegradable Plastic and Film Production from Seaweeds. In Bulletin of Biotechnology (Vol. 3, Issue 1, pp. 21–26). Avrasya Arastirma Gelistirme Bilim ve Teknoloji Merkezi Limited Sirketi. https://doi.org/10.51539/biotech.1033959 DOI: https://doi.org/10.51539/biotech.1033959
Lim, J.-Y., Hii, S.-L., Chee, S.-Y., & Wong, C.-L. (2018). Sargassum siliquosum J. Agardh extract as potential material for synthesis of bioplastic film. In Journal of Applied Phycology (Vol. 30, Issue 6, pp. 3285–3297). Springer Science and Business Media LLC. https://doi.org/10.1007/s10811-018-1603-2 DOI: https://doi.org/10.1007/s10811-018-1603-2
Ayala, M., Thomsen, M., & Pizzol, M. (2023). Life Cycle Assessment of pilot scale production of seaweed-based bioplastic. In Algal Research (Vol. 71, p. 103036). Elsevier BV. https://doi.org/10.1016/j.algal.2023.103036 DOI: https://doi.org/10.1016/j.algal.2023.103036
Zhang, X., & Thomsen, M. (2021). Techno-economic and environmental assessment of novel biorefinery designs for sequential extraction of high-value biomolecules from brown macroalgae Laminaria digitata, Fucus vesiculosus, and Saccharina latissima. In Algal Research (Vol. 60, p. 102499). Elsevier BV. https://doi.org/10.1016/j.algal.2021.102499 DOI: https://doi.org/10.1016/j.algal.2021.102499
van den Burg, S., Selnes, T., Alves, L., Giesbers, E., & Daniel, A. (2020). Prospects for upgrading by the European kelp sector. In Journal of Applied Phycology (Vol. 33, Issue 1, pp. 557–566). Springer Science and Business Media LLC. https://doi.org/10.1007/s10811-020-02320-z DOI: https://doi.org/10.1007/s10811-020-02320-z
Senturk Parreidt, T., Müller, K., & Schmid, M. (2018). Alginate-Based Edible Films and Coatings for Food Packaging Applications. In Foods (Vol. 7, Issue 10, p. 170). MDPI AG. https://doi.org/10.3390/foods7100170 DOI: https://doi.org/10.3390/foods7100170
Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. In LWT - Food Science and Technology (Vol. 37, Issue 3, pp. 323–330). Elsevier BV. https://doi.org/10.1016/j.lwt.2003.09.008 DOI: https://doi.org/10.1016/j.lwt.2003.09.008
Roy, S., & Rhim, J.-W. (2021). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. In International Journal of Biological Macromolecules (Vol. 193, pp. 2038–2046). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2021.11.035 DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.035
Volpe, M., Coccia, E., Siano, F., Di Stasio, M., & Paolucci, M. (2019). Rapid Evaluation Methods for Quality of Trout (Oncorhynchus mykiss) Fresh Fillet Preserved in an Active Edible Coating. In Foods (Vol. 8, Issue 4, p. 113). MDPI AG. https://doi.org/10.3390/foods8040113 DOI: https://doi.org/10.3390/foods8040113
Sáez, M. I., Suárez, M. D., & Martínez, T. F. (2020). Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. In LWT (Vol. 118, p. 108767). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.108767 DOI: https://doi.org/10.1016/j.lwt.2019.108767
Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., Goudjil, M. B., & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. In International Journal of Biological Macromolecules (Vol. 145, pp. 124–132). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2019.12.093 DOI: https://doi.org/10.1016/j.ijbiomac.2019.12.093
Martínez, O., Salmerón, J., Epelde, L., Vicente, M. S., & de Vega, C. (2018). Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. In Food Control (Vol. 85, pp. 168–176). Elsevier BV. https://doi.org/10.1016/j.foodcont.2017.10.003 DOI: https://doi.org/10.1016/j.foodcont.2017.10.003
Pluta-Kubica, A., Jamróz, E., Khachatryan, G., Florkiewicz, A., & Kopel, P. (2021). Application of Furcellaran Nanocomposite Film as Packaging of Cheese. In Polymers (Vol. 13, Issue 9, p. 1428). MDPI AG. https://doi.org/10.3390/polym13091428 DOI: https://doi.org/10.3390/polym13091428
Bastarrachea, L., Dhawan, S., & Sablani, S. S. (2011). Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. In Food Engineering Reviews (Vol. 3, Issue 2, pp. 79–93). Springer Science and Business Media LLC. https://doi.org/10.1007/s12393-011-9034-8 DOI: https://doi.org/10.1007/s12393-011-9034-8
Kuki, Á., Nagy, L., Zsuga, M., & Kéki, S. (2011). Fast identification of phthalic acid esters in poly(vinyl chloride) samples by Direct Analysis In Real Time (DART) tandem mass spectrometry. In International Journal of Mass Spectrometry (Vol. 303, Issues 2–3, pp. 225–228). Elsevier BV. https://doi.org/10.1016/j.ijms.2011.02.011 DOI: https://doi.org/10.1016/j.ijms.2011.02.011
Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. In International Journal of Biological Macromolecules (Vol. 89, pp. 575–581). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2016.05.028 DOI: https://doi.org/10.1016/j.ijbiomac.2016.05.028
Hasan, M., Chong, E. W. N., Jafarzadeh, S., Paridah, M. T., Gopakumar, D., Tajarudin, H. A., Thomas, S., & Abdul Khalil, H. P. S. (2019). Enhancement in the Physico-Mechanical Functions of Seaweed Biopolymer Film via Embedding Fillers for Plasticulture Application—A Comparison with Conventional Biodegradable Mulch Film. In Polymers (Vol. 11, Issue 2, p. 210). MDPI AG. https://doi.org/10.3390/polym11020210 DOI: https://doi.org/10.3390/polym11020210
Maizura, M., Fazilah, A., Norziah, M. H., & Karim, A. A. (2007). Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch?Alginate Edible Film Containing Lemongrass Oil. In Journal of Food Science (Vol. 72, Issue 6, pp. C324–C330). Wiley. https://doi.org/10.1111/j.1750-3841.2007.00427.x DOI: https://doi.org/10.1111/j.1750-3841.2007.00427.x
Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. In Carbohydrate Polymers (Vol. 76, Issue 2, pp. 299–304). Elsevier BV. https://doi.org/10.1016/j.carbpol.2008.10.031 DOI: https://doi.org/10.1016/j.carbpol.2008.10.031
Perumal, R. K., Perumal, S., Thangam, R., Gopinath, A., Ramadass, S. K., Madhan, B., & Sivasubramanian, S. (2018). Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. In International Journal of Biological Macromolecules (Vol. 106, pp. 1032–1040). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2017.08.111 DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.111
Goonoo, N., Bhaw-Luximon, A., Passanha, P., Esteves, S., Schönherr, H., & Jhurry, D. (2017). Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. In Materials Science and Engineering: C (Vol. 76, pp. 13–24). Elsevier BV. https://doi.org/10.1016/j.msec.2017.02.156 DOI: https://doi.org/10.1016/j.msec.2017.02.156
Kostic, D., Vukasinovic-Sekulic, M., Armentano, I., Torre, L., & Obradovic, B. (2019). Multifunctional ternary composite films based on PLA and Ag/alginate microbeads: Physical characterization and silver release kinetics. In Materials Science and Engineering: C (Vol. 98, pp. 1159–1168). Elsevier BV. https://doi.org/10.1016/j.msec.2019.01.074 DOI: https://doi.org/10.1016/j.msec.2019.01.074
Ribeiro Lopes, J., Azevedo dos Reis, R., & Almeida, L. E. (2016). Production and characterization of films containing poly(hydroxybutyrate) (PHB) blended with esterified alginate (ALG-e) and poly(ethylene glycol) (PEG). In Journal of Applied Polymer Science (Vol. 134, Issue 1). Wiley. https://doi.org/10.1002/app.44362 DOI: https://doi.org/10.1002/app.44362
Olaimat, A. N., Fang, Y., & Holley, R. A. (2014). Inhibition of Campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. In International Journal of Food Microbiology (Vol. 187, pp. 77–82). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2014.07.003 DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.07.003
Shahbazi, M., Rajabzadeh, G., Ettelaie, R., & Rafe, A. (2016). Kinetic study of κ-carrageenan degradation and its impact on mechanical and structural properties of chitosan/κ-carrageenan film. In Carbohydrate Polymers (Vol. 142, pp. 167–176). Elsevier BV. https://doi.org/10.1016/j.carbpol.2016.01.037 DOI: https://doi.org/10.1016/j.carbpol.2016.01.037
Aadil, K. R., Prajapati, D., & Jha, H. (2016). Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. In Food Packaging and Shelf Life (Vol. 10, pp. 25–33). Elsevier BV. https://doi.org/10.1016/j.fpsl.2016.09.002 DOI: https://doi.org/10.1016/j.fpsl.2016.09.002
Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2014). Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. In Postharvest Biology and Technology (Vol. 88, pp. 1–7). Elsevier BV. https://doi.org/10.1016/j.postharvbio.2013.09.004 DOI: https://doi.org/10.1016/j.postharvbio.2013.09.004
Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., Fraschini, C., Bouchard, J., Uribe-Calderon, J., Kamal, M. R., & Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. In Carbohydrate Polymers (Vol. 90, Issue 4, pp. 1757–1763). Elsevier BV. https://doi.org/10.1016/j.carbpol.2012.07.065 DOI: https://doi.org/10.1016/j.carbpol.2012.07.065
Albert, A., Salvador, A., & Fiszman, S. M. (2012). A film of alginate plus salt as an edible susceptor in microwaveable food. In Food Hydrocolloids (Vol. 27, Issue 2, pp. 421–426). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2011.11.005 DOI: https://doi.org/10.1016/j.foodhyd.2011.11.005
Rhim, J.-W. (2013). Effect of PLA lamination on performance characteristics of agar/κ-carrageenan/clay bio-nanocomposite film. In Food Research International (Vol. 51, Issue 2, pp. 714–722). Elsevier BV. https://doi.org/10.1016/j.foodres.2013.01.050 DOI: https://doi.org/10.1016/j.foodres.2013.01.050
Atef, M., Rezaei, M., & Behrooz, R. (2015). Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. In Food Hydrocolloids (Vol. 45, pp. 150–157). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2014.09.037 DOI: https://doi.org/10.1016/j.foodhyd.2014.09.037
Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., Cerqueira, M. A., & Vicente, A. A. (2012). Biocomposite Films Based on κ-Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. In Food and Bioprocess Technology (Vol. 6, Issue 8, pp. 2081–2092). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-012-0851-4 DOI: https://doi.org/10.1007/s11947-012-0851-4
Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. In Carbohydrate Polymers (Vol. 86, Issue 2, pp. 691–699). Elsevier BV. https://doi.org/10.1016/j.carbpol.2011.05.010 DOI: https://doi.org/10.1016/j.carbpol.2011.05.010
Lopez-Pena, C. L., & McClements, D. J. (2014). Optimizing delivery systems for cationic biopolymers: Competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin. In Food Chemistry (Vol. 153, pp. 9–14). Elsevier BV. https://doi.org/10.1016/j.foodchem.2013.12.024 DOI: https://doi.org/10.1016/j.foodchem.2013.12.024
Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. In Environmental Science & Technology (Vol. 54, Issue 8, pp. 4712–4732). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.9b03755 DOI: https://doi.org/10.1021/acs.est.9b03755
Ghosh, K., & Jones, B. H. (2021). Roadmap to Biodegradable Plastics—Current State and Research Needs. In ACS Sustainable Chemistry & Engineering (Vol. 9, Issue 18, pp. 6170–6187). American Chemical Society (ACS). https://doi.org/10.1021/acssuschemeng.1c00801 DOI: https://doi.org/10.1021/acssuschemeng.1c00801
Narancic, T., Verstichel, S., Reddy Chaganti, S., Morales-Gamez, L., Kenny, S. T., De Wilde, B., Babu Padamati, R., & O’Connor, K. E. (2018). Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. In Environmental Science & Technology (Vol. 52, Issue 18, pp. 10441–10452). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.8b02963 DOI: https://doi.org/10.1021/acs.est.8b02963
Siddiqui, S. A., Pahmeyer, M. J., Mehdizadeh, M., Nagdalian, A. A., Oboturova, N. P., & Taha, A. (2022). Consumer Behavior and Industry Implications. In The Age of Clean Label Foods (pp. 209–247). Springer International Publishing. https://doi.org/10.1007/978-3-030-96698-0_7. DOI: https://doi.org/10.1007/978-3-030-96698-0_7
Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2023). Biodegradable biopolymers for active packaging: demand, development and directions. In Sustainable Food Technology (Vol. 1, Issue 1, pp. 50–72). Royal Society of Chemistry (RSC). https://doi.org/10.1039/d2fb00004k DOI: https://doi.org/10.1039/D2FB00004K
Gupta, V., Biswas, D., & Roy, S. (2022). A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. In Materials (Vol. 15, Issue 17, p. 5899). MDPI AG. https://doi.org/10.3390/ma15175899 DOI: https://doi.org/10.3390/ma15175899
Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillén, M. C., & Bifani, V. (2013). Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. In Food Engineering Reviews (Vol. 5, Issue 4, pp. 200–216). Springer Science and Business Media LLC. https://doi.org/10.1007/s12393-013-9072-5 DOI: https://doi.org/10.1007/s12393-013-9072-5
Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. In Carbohydrate Polymers (Vol. 137, pp. 360–374). Elsevier BV. https://doi.org/10.1016/j.carbpol.2015.10.074 DOI: https://doi.org/10.1016/j.carbpol.2015.10.074
Gomaa, M., Al-Badaani, A. A., Hifney, A. F., & Adam, M. S. (2022). Utilization of cellulose and ulvan from the green seaweed Ulva lactuca in the development of composite edible films with natural antioxidant properties. In Journal of Applied Phycology (Vol. 34, Issue 5, pp. 2615–2626). Springer Science and Business Media LLC. https://doi.org/10.1007/s10811-022-02786-z DOI: https://doi.org/10.1007/s10811-022-02786-z
Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. In Food Hydrocolloids (Vol. 47, pp. 168–177). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2015.01.032 DOI: https://doi.org/10.1016/j.foodhyd.2015.01.032
Frank, K., Garcia, C. V., Shin, G. H., & Kim, J. T. (2018). Alginate Biocomposite Films Incorporated with Cinnamon Essential Oil Nanoemulsions: Physical, Mechanical, and Antibacterial Properties. In International Journal of Polymer Science (Vol. 2018, pp. 1–8). Hindawi Limited. https://doi.org/10.1155/2018/1519407 DOI: https://doi.org/10.1155/2018/1519407
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. In International Journal of Biological Macromolecules (Vol. 109, pp. 1095–1107). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2017.11.097 DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.097
Roy, S., & Rhim, J.-W. (2021). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. In Colloids and Surfaces A: Physicochemical and Engineering Aspects (Vol. 627, p. 127220). Elsevier BV. https://doi.org/10.1016/j.colsurfa.2021.127220 DOI: https://doi.org/10.1016/j.colsurfa.2021.127220
Yang, Z., Zhai, X., Zhang, C., Shi, J., Huang, X., Li, Z., Zou, X., Gong, Y., Holmes, M., Povey, M., & Xiao, J. (2022). Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. In Food Hydrocolloids (Vol. 123, p. 107187). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2021.107187 DOI: https://doi.org/10.1016/j.foodhyd.2021.107187
Louis, E., Villalobos-Carvajal, R., Reyes-Parra, J., Jara-Quijada, E., Ruiz, C., Andrades, P., Gacitúa, J., & Beldarraín-Iznaga, T. (2021). Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. In Food Packaging and Shelf Life (Vol. 28, p. 100662). Elsevier BV. https://doi.org/10.1016/j.fpsl.2021.100662 DOI: https://doi.org/10.1016/j.fpsl.2021.100662
Prasetyaningrum, A., Utomo, D. P., Raemas, A. F. A., Kusworo, T. D., Jos, B., & Djaeni, M. (2021). Alginate/κ-Carrageenan-Based Edible Films Incorporated with Clove Essential Oil: Physico-Chemical Characterization and Antioxidant-Antimicrobial Activity. In Polymers (Vol. 13, Issue 3, p. 354). MDPI AG. https://doi.org/10.3390/polym13030354 DOI: https://doi.org/10.3390/polym13030354
Zhang, B., Liu, Y., Wang, H., Liu, W., Cheong, K., & Teng, B. (2021). Effect of sodium alginate-agar coating containing ginger essential oil on the shelf life and quality of beef. In Food Control (Vol. 130, p. 108216). Elsevier BV. https://doi.org/10.1016/j.foodcont.2021.108216 DOI: https://doi.org/10.1016/j.foodcont.2021.108216
Lu, W., Chen, M., Cheng, M., Yan, X., Zhang, R., Kong, R., Wang, J., & Wang, X. (2021). Development of antioxidant and antimicrobial bioactive films based on Oregano essential oil/mesoporous nano-silica/sodium alginate. In Food Packaging and Shelf Life (Vol. 29, p. 100691). Elsevier BV. https://doi.org/10.1016/j.fpsl.2021.100691 DOI: https://doi.org/10.1016/j.fpsl.2021.100691
Motelica, L., Ficai, D., Oprea, O.-C., Ficai, A., Ene, V.-L., Vasile, B.-S., Andronescu, E., & Holban, A.-M. (2021). Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese. In Nanomaterials (Vol. 11, Issue 9, p. 2377). MDPI AG. https://doi.org/10.3390/nano11092377 DOI: https://doi.org/10.3390/nano11092377
Kavoosi, G., Derakhshan, M., Salehi, M., & Rahmati, L. (2018). Microencapsulation of zataria essential oil in agar, alginate and carrageenan. In Innovative Food Science & Emerging Technologies (Vol. 45, pp. 418–425). Elsevier BV. https://doi.org/10.1016/j.ifset.2017.12.010 DOI: https://doi.org/10.1016/j.ifset.2017.12.010
Nouri, A., Tavakkoli Yaraki, M., Ghorbanpour, M., & Wang, S. (2018). Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. In International Journal of Biological Macromolecules (Vol. 115, pp. 227–235). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2018.04.051 DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.051
Praseptiangga, D., Rahmawati, A., Manuhara, G. J., Khasanah, L. U., & Utami, R. (2021). Effects of Plasticizer and Cinnamon Essential Oil Incorporation on Mechanical and Water Barrier Properties of Semirefined Iota-Carrageenan-based Edible Film. In IOP Conference Series: Earth and Environmental Science (Vol. 828, Issue 1, p. 012034). IOP Publishing. https://doi.org/10.1088/1755-1315/828/1/012034 DOI: https://doi.org/10.1088/1755-1315/828/1/012034
Circuncisão, A., Catarino, M., Cardoso, S., & Silva, A. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. In Marine Drugs (Vol. 16, Issue 11, p. 400). MDPI AG. https://doi.org/10.3390/md16110400 DOI: https://doi.org/10.3390/md16110400
Sadovoy, V.V., Selimov, M.A., Shchedrina, T.V., Nagdalian, A.A. (2016). Usage of biological active supplements in technology of prophilactic meat products. Res. J. Pharm. Biol. Chem. Sci. (Vol. 7, Issue 5, pp. 1861–1865). India S.N.
Sadovoy, V. V., Selimov, M. A., Shchedrina, T. V., Nagdalian, A. A. (2017). Nutritional supplement for control of diabetes. In Journal of Excipients and Food Chemicals (Vol. 8, Issue 2, pp 31–38). IPEC-Americas
Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential oils as additives in active food packaging. In Food Chemistry (Vol. 343, p. 128403). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.128403 DOI: https://doi.org/10.1016/j.foodchem.2020.128403
Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. In Asian Pacific Journal of Tropical Biomedicine (Vol. 5, Issue 8, pp. 601–611). Medknow. https://doi.org/10.1016/j.apjtb.2015.05.007 DOI: https://doi.org/10.1016/j.apjtb.2015.05.007
Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. In Trends in Food Science & Technology (Vol. 61, pp. 132–140). Elsevier BV. https://doi.org/10.1016/j.tifs.2016.11.021 DOI: https://doi.org/10.1016/j.tifs.2016.11.021
Ebrahimzadeh, S., Biswas, D., Roy, S., & McClements, D. J. (2023). Incorporation of essential oils in edible seaweed-based films: A comprehensive review. In Trends in Food Science & Technology (Vol. 135, pp. 43–56). Elsevier BV. https://doi.org/10.1016/j.tifs.2023.03.015 DOI: https://doi.org/10.1016/j.tifs.2023.03.015
Berry, Tarl. Michael., Defraeye, Thijs., Shrivastava, Chandrima., Ambaw, Alemayehu., Coetzee, Corné., & Opara, Umezuruike. Linus. (2022). Designing ventilated packaging for the fresh produce cold chain. In Food and Bioproducts Processing (Vol. 134, pp. 121–149). Elsevier BV. https://doi.org/10.1016/j.fbp.2022.04.005 DOI: https://doi.org/10.1016/j.fbp.2022.04.005
Rengasamy, K. RR., Mahomoodally, M. F., Aumeeruddy, M. Z., Zengin, G., Xiao, J., & Kim, D. H. (2020). Bioactive compounds in seaweeds: An overview of their biological properties and safety. In Food and Chemical Toxicology (Vol. 135, p. 111013). Elsevier BV. https://doi.org/10.1016/j.fct.2019.111013 DOI: https://doi.org/10.1016/j.fct.2019.111013
Albertos, I., Martin-Diana, A. B., Burón, M., & Rico, D. (2019). Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. In Food Packaging and Shelf Life (Vol. 22, p. 100382). Elsevier BV. https://doi.org/10.1016/j.fpsl.2019.100382 DOI: https://doi.org/10.1016/j.fpsl.2019.100382
Abdul Khalil, H. P. S., Saurabh, C. K., Tye, Y. Y., Lai, T. K., Easa, A. M., Rosamah, E., Fazita, M. R. N., Syakir, M. I., Adnan, A. S., Fizree, H. M., Aprilia, N. A. S., & Banerjee, A. (2017). Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. In Renewable and Sustainable Energy Reviews (Vol. 77, pp. 353–362). Elsevier BV. https://doi.org/10.1016/j.rser.2017.04.025 DOI: https://doi.org/10.1016/j.rser.2017.04.025
Trindade, M. A., Nunes, C., Coimbra, M. A., Gonçalves, F. J. M., Marques, J. C., & Gonçalves, A. M. M. (2022). Sustainable and Biodegradable Active Films Based on Seaweed Compounds to Improve Shelf Life of Food Products. In Sustainable Global Resources of Seaweeds Volume 2 (pp. 235–252). Springer International Publishing. https://doi.org/10.1007/978-3-030-92174-3_12 DOI: https://doi.org/10.1007/978-3-030-92174-3_12
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.