Characterization of compisote edible films from aloe vera gel, beeswax and chitosan
DOI:
https://doi.org/10.5219/1177Keywords:
edible film, chitosan, beeswax, Aloe vera gel, physiochemical propertiesAbstract
Environmental consciousness as well as individual”™s demand for ready to eat food, recently, has changed the trends in food packaging leading to the development of biodegradable and edible packaging. Emulsified edible films have better transparency, superior mechanical properties and provide barriers to water and other atmospheric gases. Edible films if not consumed, biodegrad chemically. In present study, edible films were, initially, prepared using Chitosan and Aloe vera at different concentrations. Films were then subjected to physical and mechanical testing. Films with 20% Aloe vera had low thickness as compared to films with no Aloe vera. These films also had superior mechanical properties and lower water vapor permeability. Films with 20% Aloe vera were, then, selected and beeswax was dispersed in Chitosan-Aloe vera solution at concentration upto 2.0% followed by film preparation through casting technique. Thickness and water vapor permeability were observed to be improved with increase in concentration of beeswax. Tensile strength of edible films was also improved 1.3 times when concentration of beeswax increased from 0.5 to 2.0%. Percentage elongation decreased with increase in beeswax concentration in the emulsified films. No change in particle size was observed with change in concentration of beeswax. Emulsions were also stable at room temperatures. Decrease in transparency of emulsified edible films was observed with increase in beeswax content in the emulsified films. In addition, cost analysis of the films proved them reasonable to be used as an alternate of synthetic packaging materials.
Downloads
Metrics
References
Abugoch, L. E., Tapia, C., Villamán, M. C., Yazdani-Pedram, M., Díaz-Dosque, M. 2011. Characterization of quinoa protein echitosan blend edible films. Food Hydrocolloids, vol. 25, no. 5, p. 879-886. https://doi.org/10.1016/j.foodhyd.2010.08.008 DOI: https://doi.org/10.1016/j.foodhyd.2010.08.008
Ahmed, M. J., Singh, Z., Khan, A. S. 2009. Postharvest Aloe vera gel-coating modulates fruit ripening and quality of 'Arctic Snow' nectarine kept in ambient and cold storage. International Journal of Food Science & Technology, vol. 44, no. 5, p. 1024-1033. https://doi.org/10.1111/j.1365-2621.2008.01873.x DOI: https://doi.org/10.1111/j.1365-2621.2008.01873.x
Alves, N. M., Mano, J. F. 2008. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macrololecules, vol. 43, no. 5, p. 401-414. https://doi.org/10.1016/j.ijbiomac.2008.09.007 DOI: https://doi.org/10.1016/j.ijbiomac.2008.09.007
Elsabee, M. Z., Abdou, E. S. 2013. Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, vol. 33, no. 4, p. 1819-1841. https://doi.org/10.1016/j.msec.2013.01.010 DOI: https://doi.org/10.1016/j.msec.2013.01.010
Gomes dos Santos, F. K.., de Oliveira Silva, K. N., Noberto Xavier, T. D., de Lima Leite, R. H., mendes Aroucha, E. M. 2017. Effect of the Addition of Carnauba Wax on Physicochemical Properties of Chitosan Films. Materials Research, vol. 20, p. 479-484. https://doi.org/10.1590/1980-5373-mr-2016-1010 DOI: https://doi.org/10.1590/1980-5373-mr-2016-1010
Guo, X., Mei, N. 2016. Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health, Part C, vol. 34, no. 2, p. 77-96. https://doi.org/10.1080/10590501.2016.1166826 DOI: https://doi.org/10.1080/10590501.2016.1166826
Indriyati, L. 2018 Preparation and characterization of bacterial cellulose-beeswax films. IOP Conference Series: Earth and Environmental Science, vol. 160, 7 p. https://doi.org/10.1088/1755-1315/160/1/012010 DOI: https://doi.org/10.1088/1755-1315/160/1/012010
Khoshgozaran-Abras, S., Azizi, M. H., Hamidy, Z., Bagheripoor-Fallah, N. 2012. Mechanical, physicochemical and color properties of chitosan based-films as a function of Aloe vera gel incorporation. Carbohydrate Polymers, vol. 87, no. 3, p. 2058-2062. https://doi.org/10.1016/j.carbpol.2011.10.020 DOI: https://doi.org/10.1016/j.carbpol.2011.10.020
Koushesh Saba, M., Sogvar, O. 2016. Combination of carboxymethyl cellulose-based coatings with calcium and ascorbic acid impacts in browning and quality of fresh-cut apples. LWT - Food Science and Technology, vol. 66, p. 165-171. https://doi.org/10.1016/j.lwt.2015.10.022 DOI: https://doi.org/10.1016/j.lwt.2015.10.022
Miranda, S. P., Garnica, O., Lara-Sagahon, V., Cárdenas, G. 2004. Water Vapor Permeability and Mechanical Properties of Chitosan Films. Journal of the Chilean Chemical Society, vol. 49, no. 2, p. 173-178. https://doi.org/10.4067/S0717-97072004000200013 DOI: https://doi.org/10.4067/S0717-97072004000200013
Misir, J., Brishti, F. H., Hoque, M. M. 2014. Aloe vera gel as a Novel Edible Coating for Fresh Fruits: A Review. American Journal of Food Science and Technology, vol. 2, no. 3, 93-97. https://doi.org/10.12691/ajfst-2-3-3 DOI: https://doi.org/10.12691/ajfst-2-3-3
Ortega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., Chiralt, A. 2017. Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, vol. 72, p. 1-10. https://doi.org/10.1016/j.foodhyd.2017.05.023 DOI: https://doi.org/10.1016/j.foodhyd.2017.05.023
Pereira, R., Tojeira, A., Vaz, D. C., Mendes, A., Bártolo, P. 2011. Preparation and characterization of films based on alginate and Aloe vera. International Journal of Polymer Analysis and Characterization, vol. 16, no. 7, p. 449-464. https://doi.org/10.1080/1023666X.2011.599923 DOI: https://doi.org/10.1080/1023666X.2011.599923
Pillai, C. K. S., Paul, W., Sharma, C. P. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, vol. 34, no. 7, p. 641-678. https://doi.org/10.1016/j.progpolymsci.2009.04.001 DOI: https://doi.org/10.1016/j.progpolymsci.2009.04.001
Pinzon, M. I., Garcia, O. R., Villa, C. C. 2018. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. Journal of the Science of Food and Agriculture, vol. 98, no. 11, p. 4042-4049. https://doi.org/10.1002/jsfa.8915 DOI: https://doi.org/10.1002/jsfa.8915
Pothuraju, R., Sharma, R. K., Onteru, S. K., Singh, S., Hussain, S. A. 2015. Hypoglycemic and hypolipidemic effects of Aloe verae xtract preparations: A review. Phytotherapy Research, vol. 30, no. 2, p. 200-207. https://doi.org/10.1002/ptr.5532 DOI: https://doi.org/10.1002/ptr.5532
Purwanti, N., Zehn, A. S., Pusfitasari, E. D., Khalid N., Febrianto, E. Y., Mardjan, S. S., Kobayashi, A., Kobayashi, I. 2018. Emulsion stability of clove oil in chitosan and sodium alginate matrix. International Journal of Food Properties, vol. 21, no. 1, p. 566-581. https://doi.org/10.1080/10942912.2018.1454946 DOI: https://doi.org/10.1080/10942912.2018.1454946
Sogvar, O. B., Koushesh Saba, M., Emamifar, A. 2016. Aloe vera and ascorbic acid coatins maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest biology and Technology, vol. 144, p. 29-35. https://doi.org/10.1016/j.postharvbio.2015.11.019 DOI: https://doi.org/10.1016/j.postharvbio.2015.11.019
Soltanizadeh, N., Ghiasi-Esfahani, H. 2015. Qualitative improvement of low meat beef burger using Aloe vera. Meat Science, vol. 99, p. 75-80. https://doi.org/10.1016/j.meatsci.2014.09.002 DOI: https://doi.org/10.1016/j.meatsci.2014.09.002
Vahdat, S., Ghazvini, R. F., Ghasemnezhad, M. 2010. Effect of Aloe vera gel on maintenance of strawberry fruits quality. 2010. Acta horticulturae, vol. 877, p. 919-923. https://doi.org/10.17660/ActaHortic.2010.877.123 DOI: https://doi.org/10.17660/ActaHortic.2010.877.123
Valverde, J. M., Valero, D., Martínez-Romero, D., Guillén, F., Castillo, S., Serrano, M. 2005. Novel edible coating based on aloe vera gel to maintain table grape quality and safety. Journal of Agricultural and Food Chemistry, vol. 53, no. 20, p. 7807-7813. https://doi.org/10.1021/jf050962v DOI: https://doi.org/10.1021/jf050962v
Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., Moldão-Martins, M. 2013a. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, vol. 52, no. 2, p. 80-92. https://doi.org/10.1016/j.lwt.2013.02.004 DOI: https://doi.org/10.1016/j.lwt.2013.02.004
Velickova, E., Winkelhausen, E., Kuzmanova, S., Moldão-Martins, M., Alves, V. D. 2013b. Characterization of multilayered and composite edible films from chitosan and beeswax. Food Science and Technology International, vol. 21, no. 2, p. 83-93. https://doi.org/10.1177/1082013213511807 DOI: https://doi.org/10.1177/1082013213511807
Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousaa, M. C., Vicente, A. A., Martins, J. T. 2016. Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, vol. 116, p. 88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011 DOI: https://doi.org/10.1016/j.postharvbio.2016.01.011
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.