Development of active and biodegradable film of ternary-based for food application
DOI:
https://doi.org/10.5219/1853Keywords:
anthocyanin, biodegradable film, biopolymer, chitosan, packaging, propolisAbstract
The effectiveness of plastic packaging in protecting food is quite appreciable, but its non-biodegradable characteristic raises concerns about environmental impacts. This has drawn attention to the development of alternative materials for food packaging from bio-based polymers. Chitosan, a polysaccharide with biodegradable, biocompatible, and non-toxic properties, is widely used in the formulation of food films. The objective of this work was to create a biodegradable and sustainable chitosan-based film whose active and intelligent action is obtained from red cabbage anthocyanins and the addition of propolis. The edible film’s thickness and total polyphenol content were 61.0 ±0.1μm and 20.08 ±0.5 mgAG g-1, respectively. The content of phenolic compounds and the biodegradation showed significant results (p <0.05), besides the good thermal stability to 200 °C and transparency. The proposed formulation developed an edible, biodegradable, and active (antioxidant) film with interesting heat-sealing resistance, moisture barrier and gas transfer, which contributes to increasing food shelf life.
Downloads
Metrics
References
Finardi, S., Hoffmann, T. G., Angioletti, B. L., Mueller, E., Lazzaris, R. S., Bertoli, S. L., Hlebová, M., Khayrullin, M., Nikolaeva, N., Shariati, M. A., & Krebs de Souza, C. (2022). Development and application of antioxidant coating on fragaria spp. stored under isothermal conditions. In Journal of microbiology, biotechnology and food sciences (Vol. 11, Issue 4, p. e5432). Slovak University of Agriculture in Nitra. https://doi.org/10.55251/jmbfs.5432 DOI: https://doi.org/10.55251/jmbfs.5432
Pergentino Dos Santos, S., Angioletti, B. L., Hoffmann, T. G., Gonçalves, M. J., Bertoli, S. L., Hlebová, M., Khayrullin, M., Gribkova, V., Shariati, M. A., & Krebs De Souza, C. (2022). Whey based biopolymeric coating as an alternative to improve quality of fresh fruits (malpighia emarginata d.c.) from southern brazil. In Journal of microbiology, biotechnology and food sciences (Vol. 11, Issue 5, p. e5433). Slovak University of Agriculture in Nitra. https://doi.org/10.55251/jmbfs.5433 DOI: https://doi.org/10.55251/jmbfs.5433
Angioletti, B. L., Pergentino, S., Hoffmann, T. G., Goncalves, M. J., Carvalho, L. F., Bertoli, S. L., Souza, C. K. (2020). Aloe vera gel as natural additive to improve oxidative stability in refrigerated beef burger stored in aerobic and vacuum packaging. In: 2020 Virtual AIChE Annual Meeting, San Francisco.
Pergentino, S., Angioletti, B. L., Hoffmann, T. G., Goncalves, M. J., Carvalho, L. F., Bertoli, S. L., Souza, C. K. (2020). Influence of whey protein edible film and refrigeration temperature on quality of acerola in natura during postharvest storage. In: 2020 Virtual AIChE Annual Meeting, San Francisco.
Sid, S., Mor, R. S., Kishore, A., & Sharanagat, V. S. (2021). Bio-sourced polymers as alternatives to conventional food packaging materials: A review. In Trends in Food Science & Technology (Vol. 115, pp. 87–104). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.06.026 DOI: https://doi.org/10.1016/j.tifs.2021.06.026
Sarkar, S., Das, D., Dutta, P., Kalita, J., Wann, S. B., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. In Carbohydrate Polymers (Vol. 247, p. 116594). Elsevier BV. https://doi.org/10.1016/j.carbpol.2020.116594 DOI: https://doi.org/10.1016/j.carbpol.2020.116594
Baek, J., Wahid-Pedro, F., Kim, K., Kim, K., & Tam, K. C. (2019). Phosphorylated-CNC/modified-chitosan nanocomplexes for the stabilization of Pickering emulsions. In Carbohydrate Polymers (Vol. 206, pp. 520–527). Elsevier BV. https://doi.org/10.1016/j.carbpol.2018.11.006 DOI: https://doi.org/10.1016/j.carbpol.2018.11.006
Hoffmann, T. G., Amaral D. P., Angioletti, B., Bertoli, S. L., Peres, L. V., Reiter, M. G. R., & de Souza, C. K. (2019). Potentials nanocomposites in food packaging. In Chemical Engineering Transactions (Vol. 75, pp. 253–258). https://doi.org/10.3303/CET1975043
Souza, V. G. L., Pires, J. R. A., Rodrigues, C., Coelhoso, I. M., & Fernando, A. L. (2020). Chitosan composites in packaging industry-current trends and future challenges. In Polymers (Vol. 12, Issue 2, p. 417). MDPI AG. https://doi.org/10.3390/polym12020417 DOI: https://doi.org/10.3390/polym12020417
Alirezalu, K., Hesari, J., Nemati, Z., Munekata, P. E. S., Barba, F. J., & Lorenzo, J. M. (2019). Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. In Food Research International (Vol. 120, pp. 839–850). Elsevier BV. https://doi.org/10.1016/j.foodres.2018.11.048 DOI: https://doi.org/10.1016/j.foodres.2018.11.048
Sahariah, P., & Másson, M. (2017). Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. In Biomacromolecules (Vol. 18, Issue 11, pp. 3846–3868). American Chemical Society (ACS). https://doi.org/10.1021/acs.biomac.7b01058 DOI: https://doi.org/10.1021/acs.biomac.7b01058
Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. In Carbohydrate Polymers (Vol. 169, pp. 264–271). Elsevier BV. https://doi.org/10.1016/j.carbpol.2017.04.025 DOI: https://doi.org/10.1016/j.carbpol.2017.04.025
Karagöz, Ş., & Demirdöven, A. (2019). Effect of chitosan coatings with and without Stevia rebaudiana and modified atmosphere packaging on quality of cold stored fresh-cut apples. In LWT (Vol. 108, pp. 332–337). Elsevier BV. https://doi.org/10.1016/j.lwt.2019.03.040 DOI: https://doi.org/10.1016/j.lwt.2019.03.040
Lin, L., Gu, Y., & Cui, H. (2018). Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. In Food Packaging and Shelf Life (Vol. 18, pp. 21–30). Elsevier BV. https://doi.org/10.1016/j.fpsl.2018.08.004. DOI: https://doi.org/10.1016/j.fpsl.2018.08.004
Xiong, Y., Chen, M., Warner, R. D., & Fang, Z. (2020). Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. In Food Control (Vol. 110, p. 107018). Elsevier BV. https://doi.org/10.1016/j.foodcont.2019.107018 DOI: https://doi.org/10.1016/j.foodcont.2019.107018
Alves Pinto, L. D. M., Taironi Do Prado, N. R., & De Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. In Revista Eletrônica de Farmácia (Vol. 8, Issue 3). Universidade Federal de Goias. https://doi.org/10.5216/ref.v8i3.15805 DOI: https://doi.org/10.5216/ref.v8i3.15805
Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2015). Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 13, pp. 2223–2230). Informa UK Limited. https://doi.org/10.1080/10408398.2013.805316 DOI: https://doi.org/10.1080/10408398.2013.805316
Kurek, M., Garofulić, I. E., Bakić, M. T., Ščetar, M., Uzelac, V. D., & Galić, K. (2018). Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. In Food Hydrocolloids (Vol. 84, pp. 238–246). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.05.050 DOI: https://doi.org/10.1016/j.foodhyd.2018.05.050
Wang, X., Yong, H., Gao, L., Li, L., Jin, M., & Liu, J. (2019). Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. In Food Hydrocolloids (Vol. 89, pp. 56–66). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.10.019 DOI: https://doi.org/10.1016/j.foodhyd.2018.10.019
Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. In Food Chemistry (Vol. 272, pp. 306–312). Elsevier BV. https://doi.org/10.1016/j.foodchem.2018.08.041 DOI: https://doi.org/10.1016/j.foodchem.2018.08.041
Hoffmann, T. G., Angioletti, B. L., Bertoli, S. L., & de Souza, C. K. (2021). Intelligent pH-sensing film based on jaboticaba peels extract incorporated on a biopolymeric matrix. In Journal of Food Science and Technology (Vol. 59, Issue 3, pp. 1001–1010). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-021-05104-6 DOI: https://doi.org/10.1007/s13197-021-05104-6
Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. In Food Hydrocolloids (Vol. 87, pp. 858–868). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.08.028 DOI: https://doi.org/10.1016/j.foodhyd.2018.08.028
Pereira, V. A., Jr., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. In Food Hydrocolloids (Vol. 43, pp. 180–188). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2014.05.014 DOI: https://doi.org/10.1016/j.foodhyd.2014.05.014
Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colourimetric pH indicator based on bacterial cellulose nanofibers and red cabbage ( Brassica oleraceae ) extract. In Carbohydrate Polymers (Vol. 156, pp. 193–201). Elsevier BV. https://doi.org/10.1016/j.carbpol.2016.09.027 DOI: https://doi.org/10.1016/j.carbpol.2016.09.027
Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. In Carbohydrate Polymers (Vol. 151, pp. 150–159). Elsevier BV. https://doi.org/10.1016/j.carbpol.2016.05.025 DOI: https://doi.org/10.1016/j.carbpol.2016.05.025
De Carli, C., Aylanc, V., Mouffok, K. M., Santamaria-Echart, A., Barreiro, F., Tomás, A., Pereira, C., Rodrigues, P., Vilas-Boas, M., & Falcão, S. I. (2022). Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. In International Journal of Biological Macromolecules (Vol. 213, pp. 486–497). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2022.05.155 DOI: https://doi.org/10.1016/j.ijbiomac.2022.05.155
Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. In International Journal of Biological Macromolecules (Vol. 179, pp. 90–100). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2021.02.170 DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.170
Souza, V., Fernando, A., Pires, J., Rodrigues, P., Lopes, A., Fernandes, F. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops And Products, (Vol. 107, pp. 565-572). Elsevier BV. http://dx.doi.org/10.1016/j.indcrop.2017.04.056 DOI: https://doi.org/10.1016/j.indcrop.2017.04.056
Shahabi, N., Soleimani, S., & Ghorbani, M. (2023). Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. In International Journal of Biological Macromolecules (Vol. 231, p. 123350). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2023.123350 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123350
Cheng, M., Cui, Y., Yan, X., Zhang, R., Wang, J., & Wang, X. (2022). Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts. In Food Hydrocolloids (Vol. 124, p. 107225). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2021.107225 DOI: https://doi.org/10.1016/j.foodhyd.2021.107225
Freitas, P. A. V., de Oliveira, T. V., Silva, R. R. A., Fialho e Moraes, A. R., Pires, A. C. dos S., Soares, R. R. A., Junior, N. S., & Soares, N. F. F. (2020). Effect of pH on the intelligent film-forming solutions produced with red cabbage extract and hydroxypropylmethylcellulose. In Food Packaging and Shelf Life (Vol. 26, p. 100604). Elsevier BV. https://doi.org/10.1016/j.fpsl.2020.100604 DOI: https://doi.org/10.1016/j.fpsl.2020.100604
Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. In Journal of Agriculture and Food Research (Vol. 9, p. 100340). Elsevier BV. https://doi.org/10.1016/j.jafr.2022.100340 DOI: https://doi.org/10.1016/j.jafr.2022.100340
Hashim, S. B. H., Tahir, H. E., Lui, L., Zhang, J., Zhai, X., Mahdi, A. A., Ibrahim, N. A., Mahunu, G. K., Hassan, M. M., Xiaobo, Z., & Jiyong, S. (2023). Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. In Food Chemistry (Vol. 399, p. 133824). Elsevier BV. https://doi.org/10.1016/j.foodchem.2022.133824 DOI: https://doi.org/10.1016/j.foodchem.2022.133824
Marangoni Júnior, L., Jamróz, E., Gonçalves, S. de Á., da Silva, R. G., Alves, R. M. V., & Vieira, R. P. (2022). Preparation and characterization of sodium alginate films with propolis extract and nano-SiO2. In Food Hydrocolloids for Health (Vol. 2, p. 100094). Elsevier BV. https://doi.org/10.1016/j.fhfh.2022.100094 DOI: https://doi.org/10.1016/j.fhfh.2022.100094
Hoffmann, T. G., Ronzoni A. F., da Silva D. L., Bertoli S. L., & de Souza C. K. (2021). Cooling Kinetics and Mass Transfer in Postharvest Preservation of Fresh Fruits and Vegetables Under Refrigerated Conditions. Chemical Engineering Transactions, 87, 115–120. https://doi.org/10.3303/CET2187020
Hoffmann, T.G., Meinert, C., Ormelez, F., Campani, C., Bertoli, S.L., Ender, L., De Souza, C.K. (2023). Fresh food shelf-life improvement by humidity regulation in domestic refrigeration. Procedia Computer Science (Vol.217, pp. 826-834). Elsevier BV. https://doi.org/10.1016/j.procs.2022.12.279 DOI: https://doi.org/10.1016/j.procs.2022.12.279
Bertotto, C., Bilck, A. P., Yamashita, F., Anjos, O., Bakar Siddique, M. A., Harrison, S. M., Brunton, N. P., & Carpes, S. T. (2022). Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product. In LWT (Vol. 157, p. 113124). Elsevier BV. https://doi.org/10.1016/j.lwt.2022.113124 DOI: https://doi.org/10.1016/j.lwt.2022.113124
Ren, G., He, Y., Lv, J., Zhu, Y., Xue, Z., Zhan, Y., Sun, Y., Luo, X., Li, T., Song, Y., Niu, F., Huang, M., Fang, S., Fu, L., & Xie, H. (2023). Highly biologically active and pH-sensitive collagen hydrolysate-chitosan film loaded with red cabbage extracts realizing dynamic visualization and preservation of shrimp freshness. In International Journal of Biological Macromolecules (Vol. 233, p. 123414). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2023.123414 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123414
Fernández-Marín, R., Labidi, J., Andrés, M. Á., & Fernandes, S. C. M. (2020). Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. In Polymer Degradation and Stability (Vol. 179, p. 109227). Elsevier BV. https://doi.org/10.1016/j.polymdegradstab.2020.109227 DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109227
Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. In Food Hydrocolloids (Vol. 29, Issue 2, pp. 290–297). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2012.03.005 DOI: https://doi.org/10.1016/j.foodhyd.2012.03.005
Ghosh, T., Priyadarshi, R., Krebs de Souza, C., Angioletti, B. L., & Rhim, J.-W. (2022). Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. In Trends in Food Science & Technology (Vol. 125, pp. 43–53). Elsevier BV. https://doi.org/10.1016/j.tifs.2022.05.001 DOI: https://doi.org/10.1016/j.tifs.2022.05.001
Correa-Pacheco, Z. N., Bautista-Baños, S., Ramos-García, M. de L., Martínez-González, M. del C., & Hernández-Romano, J. (2019). Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. In Progress in Organic Coatings (Vol. 137, p. 105326). Elsevier BV. https://doi.org/10.1016/j.porgcoat.2019.105326 DOI: https://doi.org/10.1016/j.porgcoat.2019.105326
Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. In Food Hydrocolloids (Vol. 61, pp. 695–702). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2016.06.001 DOI: https://doi.org/10.1016/j.foodhyd.2016.06.001
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. In Materials Science and Engineering: C (Vol. 33, Issue 4, pp. 1819–1841). Elsevier BV. https://doi.org/10.1016/j.msec.2013.01.010 DOI: https://doi.org/10.1016/j.msec.2013.01.010
Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. In Food Chemistry (Vol. 110, Issue 2, pp. 428–435). Elsevier BV. https://doi.org/10.1016/j.foodchem.2008.02.020 DOI: https://doi.org/10.1016/j.foodchem.2008.02.020
Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F., & Tan, W. K. (2021). Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. In Polymer Degradation and Stability (Vol. 188, p. 109563). Elsevier BV. https://doi.org/10.1016/j.polymdegradstab.2021.109563 DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109563
Tu, H., Li, X., Xie, K., Zhang, J., Liu, Y., shao, X., Lin, X., Zhang, R., & Duan, B. (2023). High strength and biodegradable dielectric film with synergistic alignment of chitosan nanofibrous networks and BNNSs. In Carbohydrate Polymers (Vol. 299, p. 120234). Elsevier BV. https://doi.org/10.1016/j.carbpol.2022.120234 DOI: https://doi.org/10.1016/j.carbpol.2022.120234
Akyuz, L., Kaya, M., Ilk, S., Cakmak, Y. S., Salaberria, A. M., Labidi, J., Yılmaz, B. A., & Sargin, I. (2018). Effect of different animal fat and plant oil additives on physicochemical, mechanical, antimicrobial and antioxidant properties of chitosan films. In International Journal of Biological Macromolecules (Vol. 111, pp. 475–484). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2018.01.045 DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.045
Ruggero, F., Carretti, E., Gori, R., Lotti, T., & Lubello, C. (2020). Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. In Chemosphere (Vol. 246, p. 125770). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2019.125770 DOI: https://doi.org/10.1016/j.chemosphere.2019.125770
Ardjoum, N., Chibani, N., Shankar, S., Fadhel, Y. B., Djidjelli, H., & Lacroix, M. (2021). Development of antimicrobial films based on poly(lactic acid) incorporated with Thymus vulgaris essential oil and ethanolic extract of Mediterranean propolis. In International Journal of Biological Macromolecules (Vol. 185, pp. 535–542). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2021.06.194 DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.194
Thirunathan, P., Arnz, P., Husny, J., Gianfrancesco, A., & Perdana, J. (2018). Thermogravimetric analysis for rapid assessment of moisture diffusivity in polydisperse powder and thin film matrices. In Food Chemistry (Vol. 242, pp. 519–526). Elsevier BV. https://doi.org/10.1016/j.foodchem.2017.09.089 DOI: https://doi.org/10.1016/j.foodchem.2017.09.089
Zhang, W., Li, X., & Jiang, W. (2020). Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. In International Journal of Biological Macromolecules (Vol. 154, pp. 1205–1214). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2019.10.275 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.275
Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. In Food Hydrocolloids (Vol. 90, pp. 216–224). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.12.015 DOI: https://doi.org/10.1016/j.foodhyd.2018.12.015
Lim, W. S., Ock, S. Y., Park, G. D., Lee, I. W., Lee, M. H., & Park, H. J. (2020). Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. In Food Packaging and Shelf Life (Vol. 26, p. 100556). Elsevier BV. https://doi.org/10.1016/j.fpsl.2020.100556 DOI: https://doi.org/10.1016/j.fpsl.2020.100556
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.