RAPD analysis of the genetic polymorphism in european wheat genotypes

Authors

  • Tí­mea Kuťka Hlozáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra
  • Edita Gregová National Agriculture and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 01 Piešťany
  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biochemistry and Biotechnology, Department of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra
  • Želmí­ra Balážová Slovak University of Agriculture, Faculty f Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Dana Miháliková Slovak University of Agriculture, Faculty f Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/520

Keywords:

Triticum aestivum L., PCR, RAPD marker, genetic diversity

Abstract

Wheat (Triticum aestivum L.) is one of the main crops for human nutrition. The genetic variability of grown wheat has been reduced by modern agronomic practices, which inturn prompted the importance of search for species that could be useful as a genepool for the improving of flour quality for human consumption or for other industrial uses. Therefore, the aim of this study was to analyze the genetic diversity among 24 European wheat genotypes based on Random Amplified Polymorphism (RAPD) markers. A total of 29 DNA fragments were amplified with an average 4.83 polymorphic fragments per primer. The primer producing the most polymorphic fragments was SIGMA-D-P, where 7 polymorphic amplification products were detected. The lowest number of amplified fragments (3) was detected by using the primer OPB-08. The size of amplified products varied between 300 bp (OPE-07) to 3000 bp (SIGMA-D-P). The diversity index (DI) of the applied RAPD markers ranged from 0.528 (OPB-07) to 0.809 (SIGMA-D-P) with an average of 0.721. The polymorphism information content (PIC) of the markers varied from 0.469 (OPB-07) to 0.798 (SIGMA-D-P) with an average 0.692. Probability of identity (PI) was low ranged from 0.009 (SIGMA-D-P) to 0.165 (OPB-07) with an avarage 0.043. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. Within the dendrogram was separated the unique genotype Insegrain (FRA) from the rest of 23 genotypes which were further subdivided into two subclusters. In the first subclaster were grouped 13 genotypes and the second subcluster involved 10 genotypes. The first subcluster also included the genotype Bagou from France, in which were detected novel high - molecular - weight glutenin subunits using SDS-PAGE. Using 6 RAPD markers only two wheat genotypes have not been distinguished. Through that the information about genetic similarity and differences will be helpful to avoid any possibility of elite germplasm becoming genetically uniform.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbas, S. J., Shah, S. R. U., Rasool, G., Iqbal, A. 2008. Analysis of genetic diversity in Pakistani wheat varieties by using randomly amplified polymorphic DNA (RAPD) primers. American-Eurasian Journal of Sustainable Agriculture, vol. 2, no. 1, p. 29-33.

Ahmed, F. A., Iqbal, M., Masood, M. S., Rabbani, M. A., Munir, M. 2010. Assessment of genetic diversity among Pakistani wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS - PAGE. Electronic Journal of Biotechnology, vol. 13, no. 3 (online). https://doi.org/10.2225/vol13-issue3-fulltext-2 DOI: https://doi.org/10.2225/vol13-issue3-fulltext-2

Ayana, A., Bryngelsson, T., Bekele, E. 2000. Genetic Variation in Wild Sorghum (Sorghum Bicolor Ssp. Verticilliflorum (L.) Moench) Germplasm from Ethiopia Assessed by Random Amplified Polymorphic DNA (RAPD). Genetic Resources and Crop Evolution, vol. 47, no. 1, p. 471-482. https://doi.org/10.1111/j.1601-5223.2000.t01-100249.x

Bajzík, P., Golian, J., Židek, R., Čapla, J., Belej, Ľ., Ondrejka, M., Mrázová, Ľ., Maršálková, L. 2010. Methods for fish species identification in food products. Potravinarstvo, vol. 4, no.3, p. 1-5. https://doi.org/10.5219/25 DOI: https://doi.org/10.5219/25

Bežo, M., Candráková, A., Štefúnová, V., Žiarovská, J., Ražná, K., 2005. Identification of flax germplasm collection duplicates using randomly amplified polymorphism DNA markers (RAPD). Acta fytotechnica et zootechnica, vol. 8, no. 3, p. 62-66.

Cifci, E. A., Yagdi, K. 2012. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified polymorphic DNA (RAPD) analysis. Turkish Journal of Field Crop, vol. 17, no. 1, p. 91-95.

Drozdz, I., Makarewicz, M., Sroka, P., Satora, O., Jankowski, P. 2015. Comparison of the yeast microbiota of different varietis of cool-climate grapes by PCR-RAPD. Potravinarstvo, vol. 9, no. 1, p. 293-298. https://doi.org/10.5219/484 DOI: https://doi.org/10.5219/484

Ebrahimi, F., Mohammadi-Nejad, G., Baghizadeh, A., Abdolinejad, M. 2011. Genetic diversity evaluation of rapeseed genotypes (Brassica napus L.) based on phenotypic traits and random amplified polymorphic DNA (RAPD) markers. African Journal of Biotechnology, vol. 10, no. 76, p. 17391-17398. https://doi.org/10.5897/ajb11.1786 DOI: https://doi.org/10.5897/AJB11.1786

Fufa, H., Baenziger, P. S., Beecher, B. S. M, Dweikat, I., Graybosh, R. A., Eskridge, K. M. 2005. Comparison of phenotipic and molecular marker - based classifications of hard red winter wheat cultivars. Euphytica, vol. 145, no. 1-2, p. 133-146. https://doi.org/10.1007/s10681-005-0626-3 DOI: https://doi.org/10.1007/s10681-005-0626-3

Gajera, B. B., Kumar, N., Singh, A. S., Punvar, B. S., Ravikiran, R., Subhash, N., Jadeja, G. C. 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Industrial Crops and Products, vol. 32, no. 3, p. 491-498. https://doi.org/10.1016/j.indcrop.2010.06.021 DOI: https://doi.org/10.1016/j.indcrop.2010.06.021

Jauhar. P. P. 1993. Alien gene transfer and genetic enrichment of bread wheat. Damania AB (ed) Biodiversity and wheat improvement, p. 103-119. ISBN 0-471-94137-9

Kapteyn, J., Simon, J. E. 2002. The use of RAPDs for assessment of identity, diversity and quality of Echinacea. Janick, J., Whipkey, A. (Eds.), Trends in New Crops and New Uses. ASHS Press, Alexandira, VA, p. 509-513.

Kuťka Hlozáková, T., Gregová, E., Gálová, Z. 2015. Genetic diversity of Glu - 1 in European wheat genetic resources and varieties. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4, no. 2, p. 23-25. https://doi.org/10.15414/jmbfs.2015.4.special2.23-25 DOI: https://doi.org/10.15414/jmbfs.2015.4.special2.23-25

Mahmood, T., Siddiqua, A., Rasheed, A., Nazar, N. 2011. Evaluation of genetic diversity in different Pakistani wheat land races. Pakistan Journal of Botany, vol. 43, no. 2, p. 1233-1239. https://doi.org/10.3923/pjbs.2006.2858.2861 DOI: https://doi.org/10.3923/pjbs.2006.2858.2861

Maric, S., Bolaric, S., Martincic, J., Pejic, I., Kozumplink, V. 2004. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breeding, vol. 123, no. 4, p. 366-369. https://doi.org/10.1111/j.1439-0523.2004.00956.x DOI: https://doi.org/10.1111/j.1439-0523.2004.00956.x

Mark, S., Adam, B., Lukaszewski, J., Whitkus, R. 1999. Development of arm specific RAPD markers for rye chromosome 2R in wheat. Crop Science, vol. 39, no. 6, p. 1702-1706. https://doi.org/10.2135/cropsci1999.3961702x DOI: https://doi.org/10.2135/cropsci1999.3961702x

Mohammadi, S. A., Prasanna, B. M. 2003. Analysis of genetic diversity in crop plant - salient statistical tools and consideration: Review and interpretation. Crop Science, vol. 43, no. 4, p. 1235-1248. https://doi.org/10.2135/cropsci2003.1235 DOI: https://doi.org/10.2135/cropsci2003.1235

Paetkau, D., Calvert, W., Stirling I., Strobeck, C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, vol. 4, no. 3, p. 347-354. https://doi.org/10.1111/j.1365-294x.1995.tb00227.x DOI: https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

Petrovičová, L., Gálová, Z., Balážová, Ž., Vivodík, M., Wójcik-Jagla, M., Rapacz, M., 2014. Genetic diversity of czechoslovak origin rye cultivars detected by RAPD markers. CECE 2014. Brno: Institute of analytical chemistry AS CR, p. 353-356. ISBN 978-80-904959-2-0.

Rehman, R., Shah, K. N., Masood, M. S., Arshad, M., Ghafoor, A. 2013. Genetic divergence among Pakistani bread wheat varieties and advanced lines for randomly amplified polymorphic DNA (RAPD) markers. Pakistan Journal of Botany, vol. 45, no. S1, p. 327-332.

Šramková, Z., Gregová, E., Šturdík, E. 2009. Genetic improvement of wheat. Nova Biotechnologica, vol. 9, no. 1, p. 27-51. DOI: https://doi.org/10.36547/nbc.1285

Štefúnová, V., Bežo, M., Labajová, M. 2013. Molecular identification of amaranth (Amaranthus L.) species used in nutrition. Potravinarstvo, vol. 7, special no., p. 231-234. http://www.potravinarstvo.com/dokumenty/mc_march_2013/bezpecnost_potravin_rastlinneho_povodu/stefunova.pdf

Thompson, J. A., Nelson, R. L., Vodkin, L. O. 1998. Identification of diverse soybean germplasm using RAPD markers. Crop Science, vol. 38, no. 5, p. 1348-1355. https://doi.org/10.2135/cropsci1998.0011183x003800050033x DOI: https://doi.org/10.2135/cropsci1998.0011183X003800050033x

Van Becelaere, G., Lumbbers, E. L., Paterson, A. H., Chee, P. W. 2005. Pedigree vs. DNA marker - based genetic similarity estimates in cotton. Crop Science, vol. 45, no. 6, p. 2281-2287. https://doi.org/10.2135/cropsci2004.0715 DOI: https://doi.org/10.2135/cropsci2004.0715

Vivodík, M., Balážová, Ž., Gálová, Z., Kuťka Hlozáková, T. 2015. Differentiation of ricin using RAPD markers. Pakistan Journal of Botany, vol. 47, no. 4, p. 1341-1345.

Weber, J. L. 1990. Informativeness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-z DOI: https://doi.org/10.1016/0888-7543(90)90195-Z

Weir, B. S. 1990. Genetic data analysis. Methods for discrete population genetic data. https://doi.org/10.2307/2532683 DOI: https://doi.org/10.2307/2532683

Zhu, Y., Chen, H., Fan, W., Wanf, Y., Li, Y., Chen, J., Yang, S., Hu, L., Leung, H., Mew, T. W., Teng, P. S., Wang, Z., Mundit, C. C. 2000. Genetic diversity and disease control in rice. Nature, vol. 406, p. 718-722. http://dx.https://doi.org/10.1038/35021046 DOI: https://doi.org/10.1038/35021046

Downloads

Published

2016-01-08

How to Cite

Kuťka Hlozáková, T. ., Gálová, Z. ., Gregová, E. ., Vivodí­k, M. ., Balážová, Želmí­ra ., & Miháliková, D. . (2016). RAPD analysis of the genetic polymorphism in european wheat genotypes. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 1–6. https://doi.org/10.5219/520

Most read articles by the same author(s)

<< < 1 2