Genetic divergence in Tunisian castor bean genotypes based on trap markers
DOI:
https://doi.org/10.5219/1292Keywords:
castor, DNA, dendrogram, PCR, PICAbstract
In the present study, the representatives of the genus Ricinus communis collected from 12 different parts of Tunisia were differentiated by the DNA fingerprinting patterns using 30 TRAP primers. The efficacy of the TRAP technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using
30 primers for TRAP analysis produced 490 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (TRAP 04 x arb 1, TRAP 22 x arb 3 and TRAP 23 x arb 3) to 13 (TRAP 56 x arb 2), and the amplicon size ranged from 100 to 1600 bp. Of the 490 amplified bands, 377 were polymorphic, with an average of 5.71 polymorphic bands per primer. To determine the level of polymorphism in the analysed group of Tunisian castor genotypes polymorphic information content (PIC) was calculated. The lowest values of polymorphic information content were recorded for TRAP 10 x arb 1 (0.555) and the highest PIC values were detected for TRAP 44 x arb 2 (0.961) with an average of 0.770. A dendrogram was constructed from a genetic distance matrix based on profiles of the 30 TRAP primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Moreover, functional TRAP markers would be efficiently useful in genetic studies for castor genetic improvement.
Downloads
Metrics
References
Agarwal, M., Shrivastava, N., Padh, H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., vol. 27, p. 617-631. https://doi.org/10.1007/s00299-008-0507-z DOI: https://doi.org/10.1007/s00299-008-0507-z
Allan, G., Williams, A., Rabinowicz, P. D., Chan, A. P., Ravel, J., Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Resour. Crop Evol., vol. 55, p. 365-378. https://doi.org/10.1007/s10722-007-9244-3 DOI: https://doi.org/10.1007/s10722-007-9244-3
Al-Murish, T. M., Elshafei, A. A., Al-Doss, A. A. and Barakat, M .N. 2013. Genetic diversity of coffee (Coffea arabica L.) in Yemen via SRAP, TRAP and SSR markers. Journal of Food, Agriculture & Environment, vol. 11, no. 2, p. 411-416.
Alwala, S., Kimbeng, C. A., Veremis, J. C., Gravois, K. A. 2008. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica, vol. 164, p. 37-51. https://doi.org/10.1007/s10681-007-9634-9 DOI: https://doi.org/10.1007/s10681-007-9634-9
Andru, S., Pan, Y. B., Thongthawee, S. Burner, D. M., Kimbeng, C. A. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet, vol. 123, p. 77-93. https://doi.org/10.1007/s00122-011-1568-x DOI: https://doi.org/10.1007/s00122-011-1568-x
Ansari, S., Solouki, M., Fakheri, B., Fazeli-Nasab, B., Mahdinezhad, N. 2018. Assesment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian clover (Trifolium Resupinatum L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 657-666. https://doi.org/10.5219/960 DOI: https://doi.org/10.5219/960
Balážová, Ž., Gálová, Z., Vivodík, M., Chňapek, M., Hornyák Gregáňová, R. 2018. Molecular analysis of buckwheat using gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 546-552. https://doi.org/10.5219/954 DOI: https://doi.org/10.5219/954
Barakat, M. N., Al-Doss, A. A., Elshafei, A. A., Ghazy, A. I., Moustafa, K. A. 2013. Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. Australian Journal of Crop Science, vol. 7, no. 1, p. 104-111.
Bošeľová, D., Žiarovská, J. 2016. Direct PCR as the platform of Hedera helix, L. genotypying without the extraction of DNA. Journal of Central European Agriculture, vol. 17, no. 4, p. 941-949. https://doi.org/10.5513/jcea01/17.4.1795 DOI: https://doi.org/10.5513/JCEA01/17.4.1795
Carmo, C. D., Santos, D. B., Alves, L. B., Oliveira, G. A. F., Oliveira, E. J. 2015. Development of TRAP (Target Region Amplification Polymorphism) as New Tool for Molecular Genetic Analysis in Cassava. Plant Mol. Biol. Rep., vol. 33, p. 1953-1966. https://doi.org/10.1007/s11105-015-0887-5 DOI: https://doi.org/10.1007/s11105-015-0887-5
Cehula, M., Juríková, T., Žiarovská, J., Mlček, J., Kyseľ, M. 2019. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 490-496. https://doi.org/10.5219/1139 DOI: https://doi.org/10.5219/1139
Costa, H. M., Ramos, V. D. 2004. Efeito do óleo de mamona em composições de borracha natural contendo sílica. Polímeros: Ciênc. Tecnol., vol. 14, p. 46-50. https://doi.org/10.1590/S0104-14282004000100013 DOI: https://doi.org/10.1590/S0104-14282004000100013
Crotti-Franco, M., de Argollo Marques, D., Siqueira, W. J., Rocha Latado, R. 2014. Micropropagation of Jatropha curcas superior genotypes and evaluation of clonal fidelity by target region amplification polymorphism (TRAP) molecular marker and flow cytometry. African Journal of Biotechnology, vol. 13, no. 38, p. 3872-3880. https://doi.org/10.5897/AJB2014.13649 DOI: https://doi.org/10.5897/AJB2014.13649
Dias Kanthack Junior, C. A., Vieira Manechini, J. R., Correa, R. X., Rossini Pinto, A. Ch., Borges da Costa, J., Monteiro Favero, T., Rossini Pinto, L. 2020. Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development. Sugar Tech., p. 1-14. https://doi.org/10.1007/s12355-019-00791-0 DOI: https://doi.org/10.1007/s12355-019-00791-0
Dong, H., Wang, C., Li, W., Yang, G. X., Yang, H., Wang, Y. R., Chen, M. H., Li, F. J., Feng, Y., Chen, G. 2012. Castor germplasm diversity analysis using AP-PCR and RMAPD. Acad Period Farm Proc 2012.
El-Fiki, A., Adly, M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 100-108. https://doi.org/10.5219/978 DOI: https://doi.org/10.5219/978
Fabriki-Ourang, S., Yousefi-Azarkhanian, M. 2018. Genetic variability and relationships among Salvia ecotypes/species revealed by TRAP-CoRAP markers. Biotechnology & biotechnological equipment, vol. 32, no. 6, p. 1486-1495. https://doi.org/10.1080/13102818.2018.1534555 DOI: https://doi.org/10.1080/13102818.2018.1534555
FAOSTAT. 2014. Available at: http://www.fao.org/faostat/en/.
Farias da Silva, E., Barbosa de Sousa, S., Ferreira da Silva, G., Reis Sousa, N., do Nascimento Filho, F. J., Eiji Hanada, R. 2016. TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene, vol. 6, p. 43–47. https://doi.org/10.1016/j.plgene.2016.03.005 DOI: https://doi.org/10.1016/j.plgene.2016.03.005
Feng, S., He, R., Yang, S., Chen, Z., Jiang, M., Lu, J., Wang, H. 2015. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene, vol. 567, p. 182-188. https://doi.org/10.1016/j.gene.2015.04.076 DOI: https://doi.org/10.1016/j.gene.2015.04.076
Foster, J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol., vol. 10, p. 13-18. https://doi.org/10.1186/1471-2229-10-13 DOI: https://doi.org/10.1186/1471-2229-10-13
Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516 DOI: https://doi.org/10.5219/516
He, S., Xu, W., Li, F., Wang, Y., Liu, A. 2017. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Divers, vol. 39, no. 5, p. 300-307. https://doi.org/10.1016/j.pld.2017.05.007 DOI: https://doi.org/10.1016/j.pld.2017.05.007
Hu, J., Mou, B., Vick, B. A. 2007. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol, vol. 54, p. 1667-1674. https://doi.org/10.1007/s10722-006-9175-4 DOI: https://doi.org/10.1007/s10722-006-9175-4
Hu, J., Vick, B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Report, vol. 2, p. 289-294. https://doi.org/10.1007/BF02772804 DOI: https://doi.org/10.1007/BF02772804
Cheng, D., Zhang, F., Liu, L., Xu, L., Chen, Y., Wang, X., Limera, C., Yu, R., Gong, Y. 2013. TRAP markers generated with resistant gene analog sequences andtheir application to genetic diversity analysis of radish germplasm. Scientia Horticulturae, vol. 161, p. 153-159. https://doi.org/10.1016/j.scienta.2013.07.004 DOI: https://doi.org/10.1016/j.scienta.2013.07.004
Kallamadi, P. R., Ganga Rao Nadigatlab, V. P. R., Mulpuriba, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061 DOI: https://doi.org/10.1016/j.indcrop.2014.12.061
Kanti, M., Anjani, K., Usha Kiran, B., Vivekananda, K. 2015. Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech J. Genet. Plant Breed., vol. 51, p. 96-109. https://doi.org/10.17221/205/2014-CJGPB DOI: https://doi.org/10.17221/205/2014-CJGPB
Kumar, Y., Kwon, S. J., Coyne, C. J., Hu, J., Grusak, M. A., Kisha, T. J., McGee, R. J., Sarker, A. 2014. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm. Genet Resour Crop Evol., vol. 61, p. 965-977. https://doi.org/10.1007/s10722-014-0089-2 DOI: https://doi.org/10.1007/s10722-014-0089-2
Kwon, S. J., Hu, J., Coyne, C. J. 2010. Genetic diversity and relationship among faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genetic Resources, vol. 8, no. 3, p. 204-213. https://doi.org/10.1017/S1479262110000201 DOI: https://doi.org/10.1017/S1479262110000201
Liu, F., Guo, Q., Shi, H., Cheng, B., Lu, Y., Goua, L., Wanga, J., Shen, W., Yan, S., Wu, M. 2016. Genetic variation in Whitmania pigra, Hirudo nipponica and Poecilobdella manillensis, three endemic and endangered species in China using SSR and TRAP markers. Gene, vol. 579, p. 172-182. https://doi.org/10.1016/j.gene.2015.12.055 DOI: https://doi.org/10.1016/j.gene.2015.12.055
Liu, F., Shi, H., Guo, Q., Lv, F., Yu, Y., Lv, L., Shen, W., Zhao, W., Zhang, M. 2015. Analysis of the genetic diversity and population structure of Perinereis aibuhitensis in China using TRAP and AFLP markers. Biochemical Systematics and Ecology, vol. 59, p. 194-203. https://doi.org/10.1016/j.bse.2015.01.002 DOI: https://doi.org/10.1016/j.bse.2015.01.002
Lu, Z., Qi, J. M., Fang, P. P., Su, J. G., Xu, J. T., Tao, A. F. 2010. Genetic diversity and phylogenetic relationship of castor germplasm as revealed by SRAP analysis. J Wuhan Bot Res., vol. 28, no. 1, p. 1-6. https://doi.org/10.3724/SP.J.1142.2010.00001 DOI: https://doi.org/10.3724/SP.J.1142.2010.00001
Luo, C., Wu, H. X., Yao, Q. S., Wang, S. B., Xu, W. T. 2015. Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Genet. Mol. Res., vol. 14, no. 3, p. 7914-7919. https://doi.org/10.4238/2015.July.14.17 DOI: https://doi.org/10.4238/2015.July.14.17
Luo, C., Zhang, F., Zhang, Q. L., Guo, D. Y., Luo, Z. R. 2013. Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki. Genet. Mol. Res. vol. 12, no. 3, p. 2841-2851. https://doi.org/10.4238/2013.January.9.3 DOI: https://doi.org/10.4238/2013.January.9.3
Mei-Lian, T., Yan, M. F., Wang, L., Wang, L., Yan, X. C. 2012. Analysis of genetic diversity in castor bean by SRAP markers. J. Mong Uni Natl 2012.
Miklas, P. N., Hu, J., Grünwald, N. J., Larsen, K. M. 2006. Potential Application of TRAP (Targeted Region Amplified Polymorphism) Markers for Mapping and Tagging Disease Resistance Traits in Common Bean. Genomics, Molecular Genetics & Biotechnology, vol. 46, no. 2, p. 910-916. https://doi.org/10.2135/cropsci2005.08-0242 DOI: https://doi.org/10.2135/cropsci2005.08-0242
Mirajkar, S. J., Rai, A. N., Vaidya, E. R., Moharil, M. P., Dudhare, M. S., Suprasanna, P. 2017. TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.). Plant Gene, vol. 9, p. 64-70. https://doi.org/10.1016/j.plgene.2017.01.002 DOI: https://doi.org/10.1016/j.plgene.2017.01.002
Mutlu, H., Meier, M. A. R. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Technol., vol. 112, p. 10-30. https://doi.org/10.1002/ejlt.200900138 DOI: https://doi.org/10.1002/ejlt.200900138
Quintero, V., Anaya-López, J. L., Núñez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Ind. Crops Prod., vol. 41, p. 134-143. https://doi.org/10.1016/j.indcrop.2012.04.033 DOI: https://doi.org/10.1016/j.indcrop.2012.04.033
Ražná, K., Bežo, M., Hlavačková, L., Žiarovská, J., Miko, M., Gažo, J., Habán, M. 2016. MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo, vol. 10, no. 1, p. 188-194. https://doi.org/10.5219/583 DOI: https://doi.org/10.5219/583
Reddy, K. P., Nadigatla, V. P. R. G. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Ind. Crops Prod., vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061 DOI: https://doi.org/10.1016/j.indcrop.2014.12.061
Rukhsar, P. M. P., Parmar, D. J., Kalola, A. D., Kumar, S. 2017. Morphological and molecular diversity patterns in castor germplasm accessions. Ind. Crops Prod., vol. 97, p. 316-323. https://doi.org/10.1016/j.indcrop.2016.12.036 DOI: https://doi.org/10.1016/j.indcrop.2016.12.036
Simões, K. S., Silva, S. A., Machado, E. L. and Brasileiro, H. S. 2017a. Development of TRAP primers for Ricinus communis L. Genetics and Molecular Research, vol. 16, no. 2, p. 100-113. https://doi.org/10.4238/gmr16029647 DOI: https://doi.org/10.4238/gmr16029647
Simões, K. S., Silva, S. A., Machado, E. L., Silva, M. S. 2017b. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, vol. 16, no. 3, p. 100-112. https://doi.org/10.4238/gmr16039776 DOI: https://doi.org/10.4238/gmr16039776
Singh, R. B., Singh, B., Singh, R. K. 2017. Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Ind. J. Plant. Physiol., vol. 22, no. 3, p. 332–338. https://doi.org/10.1007/s40502-017-0314-z DOI: https://doi.org/10.1007/s40502-017-0314-z
Srivong, T., Zhu, Y. J., Sakuanrungsirikul, S., Nagai, Ch., Kosittrakun, M. 2019. Evaluating sugarcane genotypes for genetic variation with differential sucrose accumulation using TRAP markers and partial Sai nucleotide polymorphism. ScienceAsia, vol. 45, p. 309-317. https://doi.org/10.2306/scienceasia1513-1874.2019.45.309 DOI: https://doi.org/10.2306/scienceasia1513-1874.2019.45.309
Vasconcelos, S., Onofre, A. V. C., Milani, M., Benko-Iseppon, A. M., Brasileiro-Vidal, A. C. 2016. Accessing genetic diversity levels of Brazilian genotypes of castor with AFLP and ISSR markers. Pesq Agropec Pernamb, vol. 21, p. 24-31. https://doi.org/10.12661/pap.2016.005 DOI: https://doi.org/10.12661/pap.2016.005
Vivodík, M., Balážová, Ž., Gálová, Z. and Kuťka Hlozáková, T. 2015. Differentiation of ricin using RAPD markers. Pak. J. Bot., vol. 47, no. 4, p. 1341-1345.
Vivodík, M., Saadaoui, E., Balážová, Ž., Gálová, Z. and Petrovičová, L. 2019. Genetic diversity in Tunisian castor genotypes (Ricinus Communis L.) detected using RAPD markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 294-300. https://doi.org/10.5219/1116 DOI: https://doi.org/10.5219/1116
Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinárstvo, vol. 9, no. 1, p. 393-397. https://doi.org/10.5219/509 DOI: https://doi.org/10.5219/509
Wang, Ch., Li, G., Zhang, Z., Peng, M., Shang, Y., Luo, R., Chen, Y. 2013. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochemical Systematics and Ecology, vol. 51, p. 301-307. https://doi.org/10.1016/j.bse.2013.09.017 DOI: https://doi.org/10.1016/j.bse.2013.09.017
Wang, M. L., Dzievit, M., Chen, Z., Morris, J. B., Norris, J. E., Barkley, N. A., Tonnis, B., Pederson, G. A., Yu, J. 2017. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome, vol. 60, no. 3, p. 193-200. https://doi.org/10.1139/gen-2016-0116 DOI: https://doi.org/10.1139/gen-2016-0116
Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z DOI: https://doi.org/10.1016/0888-7543(90)90195-Z
Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J. 2007. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. J. Integr. Plant Biol., vol. 49, no. 5, p. 716−724. https://doi.org/10.1111/j.1744-7909.2007.00459.x DOI: https://doi.org/10.1111/j.1744-7909.2007.00459.x
Yue, B., Vick, B. A., Cai, X., Hu, J. 2010. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding, vol. 129, p. 24-28. https://doi.org/10.1111/j.1439-0523.2009.01661.x DOI: https://doi.org/10.1111/j.1439-0523.2009.01661.x
Zhang, J., Guo, Q., Zheng, D. 2013. Genetic diversity analysis of Pinellia ternata based on SRAP and TRAP markers. Biochemical Systematics and Ecology, vol. 50, p. 258–265. https://doi.org/10.1016/j.bse.2013.03.052 DOI: https://doi.org/10.1016/j.bse.2013.03.052
Žiarovská, J., Fialková, V., Zamiešková, L., Bilčíková, J., Zeleňáková, L., Kačániová, M. 2019. Expression pattern of thaumatin in the selected red varieties of Vitis vinifera, L. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 547-552. https://doi.org/10.5219/1057 DOI: https://doi.org/10.5219/1057
Žiarovská, J., Kyseľ, M., Cimermanová, R., Knoteková, L. 2017. Effect of DNA extraction method in the Rosa Canina L. identification under different processing temperature. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 190-196. https://doi.org/10.5219/717 DOI: https://doi.org/10.5219/717
Žiarovská, J., Zeleňáková, L., Fernández Cusimamani, E., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis Vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232. https://doi.org/10.5219/892 DOI: https://doi.org/10.5219/892
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.