Genetic divergence in Tunisian castor bean genotypes based on trap markers


  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4269
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4596
  • Želmí­ra Balážová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4327



castor, DNA, dendrogram, PCR, PIC


In the present study, the representatives of the genus Ricinus communis collected from 12 different parts of Tunisia were differentiated by the DNA fingerprinting patterns using 30 TRAP primers. The efficacy of the TRAP technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using
30 primers for TRAP analysis produced 490 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (TRAP 04 x arb 1, TRAP 22 x arb 3 and TRAP 23 x arb 3) to 13 (TRAP 56 x arb 2), and the amplicon size ranged from 100 to 1600 bp. Of the 490 amplified bands, 377 were polymorphic, with an average of 5.71 polymorphic bands per primer. To determine the level of polymorphism in the analysed group of Tunisian castor genotypes polymorphic information content (PIC) was calculated. The lowest values of polymorphic information content were recorded for TRAP 10 x arb 1 (0.555) and the highest PIC values were detected for TRAP 44 x arb 2 (0.961) with an average of 0.770. A dendrogram was constructed from a genetic distance matrix based on profiles of the 30 TRAP primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Moreover, functional TRAP markers would be efficiently useful in genetic studies for castor genetic improvement.


Download data is not yet available.


Metrics Loading ...


Agarwal, M., Shrivastava, N., Padh, H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., vol. 27, p. 617-631. DOI:

Allan, G., Williams, A., Rabinowicz, P. D., Chan, A. P., Ravel, J., Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Resour. Crop Evol., vol. 55, p. 365-378. DOI:

Al-Murish, T. M., Elshafei, A. A., Al-Doss, A. A. and Barakat, M .N. 2013. Genetic diversity of coffee (Coffea arabica L.) in Yemen via SRAP, TRAP and SSR markers. Journal of Food, Agriculture & Environment, vol. 11, no. 2, p. 411-416.

Alwala, S., Kimbeng, C. A., Veremis, J. C., Gravois, K. A. 2008. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica, vol. 164, p. 37-51. DOI:

Andru, S., Pan, Y. B., Thongthawee, S. Burner, D. M., Kimbeng, C. A. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet, vol. 123, p. 77-93. DOI:

Ansari, S., Solouki, M., Fakheri, B., Fazeli-Nasab, B., Mahdinezhad, N. 2018. Assesment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian clover (Trifolium Resupinatum L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 657-666. DOI:

Balážová, Ž., Gálová, Z., Vivodík, M., Chňapek, M., Hornyák Gregáňová, R. 2018. Molecular analysis of buckwheat using gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 546-552. DOI:

Barakat, M. N., Al-Doss, A. A., Elshafei, A. A., Ghazy, A. I., Moustafa, K. A. 2013. Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. Australian Journal of Crop Science, vol. 7, no. 1, p. 104-111.

Bošeľová, D., Žiarovská, J. 2016. Direct PCR as the platform of Hedera helix, L. genotypying without the extraction of DNA. Journal of Central European Agriculture, vol. 17, no. 4, p. 941-949. DOI:

Carmo, C. D., Santos, D. B., Alves, L. B., Oliveira, G. A. F., Oliveira, E. J. 2015. Development of TRAP (Target Region Amplification Polymorphism) as New Tool for Molecular Genetic Analysis in Cassava. Plant Mol. Biol. Rep., vol. 33, p. 1953-1966. DOI:

Cehula, M., Juríková, T., Žiarovská, J., Mlček, J., Kyseľ, M. 2019. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 490-496. DOI:

Costa, H. M., Ramos, V. D. 2004. Efeito do óleo de mamona em composições de borracha natural contendo sílica. Polímeros: Ciênc. Tecnol., vol. 14, p. 46-50. DOI:

Crotti-Franco, M., de Argollo Marques, D., Siqueira, W. J., Rocha Latado, R. 2014. Micropropagation of Jatropha curcas superior genotypes and evaluation of clonal fidelity by target region amplification polymorphism (TRAP) molecular marker and flow cytometry. African Journal of Biotechnology, vol. 13, no. 38, p. 3872-3880. DOI:

Dias Kanthack Junior, C. A., Vieira Manechini, J. R., Correa, R. X., Rossini Pinto, A. Ch., Borges da Costa, J., Monteiro Favero, T., Rossini Pinto, L. 2020. Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development. Sugar Tech., p. 1-14. DOI:

Dong, H., Wang, C., Li, W., Yang, G. X., Yang, H., Wang, Y. R., Chen, M. H., Li, F. J., Feng, Y., Chen, G. 2012. Castor germplasm diversity analysis using AP-PCR and RMAPD. Acad Period Farm Proc 2012.

El-Fiki, A., Adly, M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 100-108. DOI:

Fabriki-Ourang, S., Yousefi-Azarkhanian, M. 2018. Genetic variability and relationships among Salvia ecotypes/species revealed by TRAP-CoRAP markers. Biotechnology & biotechnological equipment, vol. 32, no. 6, p. 1486-1495. DOI:

FAOSTAT. 2014. Available at:

Farias da Silva, E., Barbosa de Sousa, S., Ferreira da Silva, G., Reis Sousa, N., do Nascimento Filho, F. J., Eiji Hanada, R. 2016. TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene, vol. 6, p. 43–47. DOI:

Feng, S., He, R., Yang, S., Chen, Z., Jiang, M., Lu, J., Wang, H. 2015. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene, vol. 567, p. 182-188. DOI:

Foster, J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol., vol. 10, p. 13-18. DOI:

Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. DOI:

He, S., Xu, W., Li, F., Wang, Y., Liu, A. 2017. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Divers, vol. 39, no. 5, p. 300-307. DOI:

Hu, J., Mou, B., Vick, B. A. 2007. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol, vol. 54, p. 1667-1674. DOI:

Hu, J., Vick, B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Report, vol. 2, p. 289-294. DOI:

Cheng, D., Zhang, F., Liu, L., Xu, L., Chen, Y., Wang, X., Limera, C., Yu, R., Gong, Y. 2013. TRAP markers generated with resistant gene analog sequences andtheir application to genetic diversity analysis of radish germplasm. Scientia Horticulturae, vol. 161, p. 153-159. DOI:

Kallamadi, P. R., Ganga Rao Nadigatlab, V. P. R., Mulpuriba, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. DOI:

Kanti, M., Anjani, K., Usha Kiran, B., Vivekananda, K. 2015. Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech J. Genet. Plant Breed., vol. 51, p. 96-109. DOI:

Kumar, Y., Kwon, S. J., Coyne, C. J., Hu, J., Grusak, M. A., Kisha, T. J., McGee, R. J., Sarker, A. 2014. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm. Genet Resour Crop Evol., vol. 61, p. 965-977. DOI:

Kwon, S. J., Hu, J., Coyne, C. J. 2010. Genetic diversity and relationship among faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genetic Resources, vol. 8, no. 3, p. 204-213. DOI:

Liu, F., Guo, Q., Shi, H., Cheng, B., Lu, Y., Goua, L., Wanga, J., Shen, W., Yan, S., Wu, M. 2016. Genetic variation in Whitmania pigra, Hirudo nipponica and Poecilobdella manillensis, three endemic and endangered species in China using SSR and TRAP markers. Gene, vol. 579, p. 172-182. DOI:

Liu, F., Shi, H., Guo, Q., Lv, F., Yu, Y., Lv, L., Shen, W., Zhao, W., Zhang, M. 2015. Analysis of the genetic diversity and population structure of Perinereis aibuhitensis in China using TRAP and AFLP markers. Biochemical Systematics and Ecology, vol. 59, p. 194-203. DOI:

Lu, Z., Qi, J. M., Fang, P. P., Su, J. G., Xu, J. T., Tao, A. F. 2010. Genetic diversity and phylogenetic relationship of castor germplasm as revealed by SRAP analysis. J Wuhan Bot Res., vol. 28, no. 1, p. 1-6. DOI:

Luo, C., Wu, H. X., Yao, Q. S., Wang, S. B., Xu, W. T. 2015. Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Genet. Mol. Res., vol. 14, no. 3, p. 7914-7919. DOI:

Luo, C., Zhang, F., Zhang, Q. L., Guo, D. Y., Luo, Z. R. 2013. Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki. Genet. Mol. Res. vol. 12, no. 3, p. 2841-2851. DOI:

Mei-Lian, T., Yan, M. F., Wang, L., Wang, L., Yan, X. C. 2012. Analysis of genetic diversity in castor bean by SRAP markers. J. Mong Uni Natl 2012.

Miklas, P. N., Hu, J., Grünwald, N. J., Larsen, K. M. 2006. Potential Application of TRAP (Targeted Region Amplified Polymorphism) Markers for Mapping and Tagging Disease Resistance Traits in Common Bean. Genomics, Molecular Genetics & Biotechnology, vol. 46, no. 2, p. 910-916. DOI:

Mirajkar, S. J., Rai, A. N., Vaidya, E. R., Moharil, M. P., Dudhare, M. S., Suprasanna, P. 2017. TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.). Plant Gene, vol. 9, p. 64-70. DOI:

Mutlu, H., Meier, M. A. R. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Technol., vol. 112, p. 10-30. DOI:

Quintero, V., Anaya-López, J. L., Núñez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Ind. Crops Prod., vol. 41, p. 134-143. DOI:

Ražná, K., Bežo, M., Hlavačková, L., Žiarovská, J., Miko, M., Gažo, J., Habán, M. 2016. MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo, vol. 10, no. 1, p. 188-194. DOI:

Reddy, K. P., Nadigatla, V. P. R. G. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Ind. Crops Prod., vol. 66, p. 271-281. DOI:

Rukhsar, P. M. P., Parmar, D. J., Kalola, A. D., Kumar, S. 2017. Morphological and molecular diversity patterns in castor germplasm accessions. Ind. Crops Prod., vol. 97, p. 316-323. DOI:

Simões, K. S., Silva, S. A., Machado, E. L. and Brasileiro, H. S. 2017a. Development of TRAP primers for Ricinus communis L. Genetics and Molecular Research, vol. 16, no. 2, p. 100-113. DOI:

Simões, K. S., Silva, S. A., Machado, E. L., Silva, M. S. 2017b. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, vol. 16, no. 3, p. 100-112. DOI:

Singh, R. B., Singh, B., Singh, R. K. 2017. Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Ind. J. Plant. Physiol., vol. 22, no. 3, p. 332–338. DOI:

Srivong, T., Zhu, Y. J., Sakuanrungsirikul, S., Nagai, Ch., Kosittrakun, M. 2019. Evaluating sugarcane genotypes for genetic variation with differential sucrose accumulation using TRAP markers and partial Sai nucleotide polymorphism. ScienceAsia, vol. 45, p. 309-317. DOI:

Vasconcelos, S., Onofre, A. V. C., Milani, M., Benko-Iseppon, A. M., Brasileiro-Vidal, A. C. 2016. Accessing genetic diversity levels of Brazilian genotypes of castor with AFLP and ISSR markers. Pesq Agropec Pernamb, vol. 21, p. 24-31. DOI:

Vivodík, M., Balážová, Ž., Gálová, Z. and Kuťka Hlozáková, T. 2015. Differentiation of ricin using RAPD markers. Pak. J. Bot., vol. 47, no. 4, p. 1341-1345.

Vivodík, M., Saadaoui, E., Balážová, Ž., Gálová, Z. and Petrovičová, L. 2019. Genetic diversity in Tunisian castor genotypes (Ricinus Communis L.) detected using RAPD markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 294-300. DOI:

Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinárstvo, vol. 9, no. 1, p. 393-397. DOI:

Wang, Ch., Li, G., Zhang, Z., Peng, M., Shang, Y., Luo, R., Chen, Y. 2013. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochemical Systematics and Ecology, vol. 51, p. 301-307. DOI:

Wang, M. L., Dzievit, M., Chen, Z., Morris, J. B., Norris, J. E., Barkley, N. A., Tonnis, B., Pederson, G. A., Yu, J. 2017. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome, vol. 60, no. 3, p. 193-200. DOI:

Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. DOI:

Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J. 2007. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. J. Integr. Plant Biol., vol. 49, no. 5, p. 716−724. DOI:

Yue, B., Vick, B. A., Cai, X., Hu, J. 2010. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding, vol. 129, p. 24-28. DOI:

Zhang, J., Guo, Q., Zheng, D. 2013. Genetic diversity analysis of Pinellia ternata based on SRAP and TRAP markers. Biochemical Systematics and Ecology, vol. 50, p. 258–265. DOI:

Žiarovská, J., Fialková, V., Zamiešková, L., Bilčíková, J., Zeleňáková, L., Kačániová, M. 2019. Expression pattern of thaumatin in the selected red varieties of Vitis vinifera, L. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 547-552. DOI:

Žiarovská, J., Kyseľ, M., Cimermanová, R., Knoteková, L. 2017. Effect of DNA extraction method in the Rosa Canina L. identification under different processing temperature. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 190-196. DOI:

Žiarovská, J., Zeleňáková, L., Fernández Cusimamani, E., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis Vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232. DOI:



How to Cite

Vivodí­k, M., Gálová, Z., & Balážová, Želmí­ra. (2020). Genetic divergence in Tunisian castor bean genotypes based on trap markers. Potravinarstvo Slovak Journal of Food Sciences, 14, 510–518.

Most read articles by the same author(s)

1 2 > >>