Genetic variation of european maize genotypes (Zea mays L.) Detected using ssr markers

Authors

  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Želmí­ra Balážová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Lenka Petrovičová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/697

Keywords:

old maize, dendrogram, SSR markers, genetic diversity, PIC

Abstract

The SSR molecular markers were used to assess genetic diversity in 40 old European maize genotypes. Ten SSR primers revealed a total of 65 alleles ranging from 4 (UMC1060) to 8 (UMC2002 and UMC1155) alleles per locus with a mean value of 6.50 alleles per locus. The PIC values ranged from 0.713 (UMC1060) to 0.842 (UMC2002) with an average value of 0.810 and the DI value ranged from 0.734 (UMC1060) to 0.848 (UMC2002) with an average value of 0.819. 100% of used SSR markers had PIC and DI values higher than 0.7 that means high polymorphism of chosen markers used for analysis. Probability of identity (PI) was low ranged from 0.004 (UMC1072) to 0.022 (UMC1060) with an average of 0.008. A dendrogram was constructed from a genetic distance matrix based on profiles of the 10 maize SSR loci using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 40 diverse accessions of maize was clustered into four clusters. The first cluster contained nine genotypes of maize, while the second cluster contained the four genotypes of maize. The third cluster contained 5 maize genotypes. Cluster 4 contained five genotypes from Hungary (22.73%), two genotypes from Poland (9.10%), seven genotypes of maize from Union of Soviet Socialist Republics (31.81%), six genotypes from Czechoslovakia (27.27%), one genotype from Slovak Republic (4.55%) and one genotype of maize is from Yugoslavia (4.55%). We could not distinguish 4 maize genotypes grouped in cluster 4, (Voroneskaja and Kocovska Skora) and 2 Hungarian maize genotypes - Feheres Sarga Filleres and Mindszentpusztai Feher, which are genetically the closest.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abd El-Azeem, R. M., Hashem, M. H. Abd-El-Haleem, S. H. M. 2015. Detection of genetic variability in Zea mays inbred lines using SSRs and SRAP markers. Egyptian Journal of Genetics and Cytology, vol. 44, no. 2, p. 291-307. DOI: https://doi.org/10.21608/ejgc.2015.9717

Al-Badeiry, N. A. H., Al-Saadi, A. H., Merza, T. K. 2014. Analysis of Genetic Diversity in Maize (Zea mays L.) Varieties Using Simple Sequence Repeat (SSR) Markers. Journal of Babylon University. vol. 22, no. 6, p. 1768-1774.

Balážová, Ž., Petrovičová, L., Gálová, Z., Vivodík, M. 2015. Molecular characterization of rye cultivars. Potravinarstvo, vol. 9, no. 1, p. 54-58. https://doi.org/10.5219/522 DOI: https://doi.org/10.5219/522

Balážová, Ž., Vivodík, M., Gálová, Z. 2016. Evaluation of molecular diversity of central European maize cultivars. Emirates Journal of Food and Agriculture. vol. 28, no. 2, p. 93-98. https://doi.org/10.9755/ejfa.2015-05-204 DOI: https://doi.org/10.9755/ejfa.2015-05-204

Dubreuil, P. and Charcosset, A. 1998. Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theoretical and Applied Genetic, vol. 96, no. 5, p. 577-587. https://doi.org/10.1007/s001220050776 DOI: https://doi.org/10.1007/s001220050776

Efendi, R., Sunarti, S., Musa, Y., Farid Bdr, M., Danial Rahim, M., Azrai, M. 2015. Selection of Homozygosity and Genetic Diversity of Maize Inbred using Simple Sequence Repeats (SSRs) Marker. International Journal of Current Research in Biosciences and Plant Biology, vol. 2, no. 3, p. 19-28.

Elçi, E., Hançer, T. 2015. Genetic Analysis of Maize (Zea mays L.) Hybrids Using Microsatellite Markers. Tarim Bilimleri Dergisi - Journal of Agricultural Sciences, vol. 21, no. 2, p. 192-198. DOI: https://doi.org/10.1501/Tarimbil_0000001321

Galvão, K. S., Ramos, H. C., Santos, P. H., Entringer, G. C., Vettorazzi, J. C., Pereira, M. G. 2015. Functional molecular markers (EST-SSR) in the full-sib reciprocal recurrent selection program of maize (Zea mays L.). Genetics and Molecular Research, vol. 14, no. 3, p. 7344-7355. https://doi.org/10.4238/2015.july.3.10 DOI: https://doi.org/10.4238/2015.July.3.10

Gay J. P. 1984. Fabuleux mais - Histoire et avenir d'une plante. AGPM, Pau, p. 295.

Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516 DOI: https://doi.org/10.5219/516

Han, B., Wang, C., Tang, Z., Ren, Y., Li, Y., Zhang, D., Dong, Y., Zhao, X. 2015. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.). PLoS ONE, vol. 10, no. 11, e0141540. https://doi.org/10.1371/journal.pone.0141540 DOI: https://doi.org/10.1371/journal.pone.0141540

Idris, A. E., Hamza, N. B., Yagoub, S. O., Ibrahim, A. I. A., El-Amin, H. K. A. 2012. Maize (Zea mays L.) Genotypes Diversity Study by Utilization of Inter-Simple Sequence Repeat (ISSR) Markers. Australian Journal of Basic and Applied Sciences, vol. 6, no. 10, p. 42-47.

Ignjatovic-Micic D., Ristic, D., Babic, V., Andjelkovic, V., Vancetovic, J. 2015. A simple SSR analysis for genetic diversity estimation of maize landraces. Genetika, vol 47, no. 1, p. 53-62. https://doi.org/10.2298/GENSR1602801E DOI: https://doi.org/10.2298/GENSR1501053I

Kanagarasu, S., Nallathambi, G., Ganesan, K. N., Kannan, S., Shobhana, V. G., Senthi, N. 2013. Determination of genetic polymorphism among indigenous and exotic maize inbreds using microsatellite markers. African Journal of Biotechnology, vol. 12, no. 39, p. 5723-5728.

Krishna, M. S. R., Reddy, S. S., Chinna Babu Naik, V. 2012. Assessment of genetic diversity in quality protein maize (QPM) lines using simple sequence repeat (SSR) markers. African Journal of Biotechnology, vol. 11, no. 98, p. 16427-16433.

Maniruzzaman, A., Talukder, Z. A., Rohman, S., Begum, F., Amiruzzaman, M. 2014. Polymorphism study in barley (Hordeum vulgare) genotypes using microsatellite (SSR) markers. Bangladesh Journal of Agricultural. Research, vol. 39, no. 1, p. 33-45. DOI: https://doi.org/10.3329/bjar.v39i1.20078

Molin, D., Coelho, C. J., Máximo, D. S., Ferreira, F. S., Gardingo, J. R., Matiello, R. R. 2013. Genetic diversity in the germplasm of tropical maize landraces determined using molecular markers. Genetics and Molecular Research. vol. 12, no. 1, p. 99-114. https://doi.org/10.4238/2013.January.22.8 DOI: https://doi.org/10.4238/2013.January.22.8

Paetkau, D., Calvert, W., Stirling, I., Strobeck, C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, vol. 4, no. 3, p. 347-354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x PMid:7663752 DOI: https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

Roy, N. S., Kim, N. S. 2016. Genetic diversity analysis of maize lines using AFLP and TE-based molecular marker systems. Genes and Genomics, vol. 38, no. 10, p. 1005-1010. https://doi.org/10.1007/s13258-016-0461-z DOI: https://doi.org/10.1007/s13258-016-0461-z

Sa, K. J., Park, J. Y., Park, K. C. Lee, J. K. 2012. Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes and Genomics, vol. 34, no. 2, p. 157-164. https://doi.org/10.1007/s13258-011-0208-9 DOI: https://doi.org/10.1007/s13258-011-0208-9

Saker, M., Nagchtigall, M., Kuehne, T. A. 2005. Comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egyptian Journal of Genetics and Cytology, vol. 34, p. 81-97.

Salami, H. A., Sika, K. C., Padonou, W., Aly, D., Yallou, C., Adjanohoun, A., Kotchoni, S., Baba-Moussa, L. 2016. Genetic Diversity of Maize Accessions (Zea mays L.) Cultivated from Benin Using Microsatellites Markers. American Journal of Molecular Biology, vol. 6, no. 1, p. 12-24. https://doi.org/10.4236/ajmb.2016.61002 DOI: https://doi.org/10.4236/ajmb.2016.61002

Shiri, M. R., Choukan, R., Aliyev, R. T. 2014. Study of genetic diversity among maize hybrids using SSR markers and morphological traits under two different irrigation conditions. Crop Breeding Journal, vol. 4, no. 1, p. 65-72.

Sun, D. F., Ren, W. B., Sun, G., Peng, J. H. 2011. Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley. Euphytica, vol. 178, no. 1, p. 31-43. https://doi.org/10.1007/s10681-010-0260-6 DOI: https://doi.org/10.1007/s10681-010-0260-6

Qu, J., Liu, J. 2013. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Research Notes, vol. 6, p. 403-410. https://doi.org/10.1186/1756-0500-6-403 DOI: https://doi.org/10.1186/1756-0500-6-403

Vivodík, M., Gálová, Z., Balážová, Ž., Petrovičová, L. 2016. Start codon targeted (SCoT) polymorphism reveals genetic diversity in European old maize (Zea mays L.) genotypes. Potravinarstvo, vol. 10, no. 1, p. 563-569. https://doi.org/10.5219/660 DOI: https://doi.org/10.5219/660

Vivodík, M., Gálová, Z., Balážová, Ž., Petrovičová, L., Kuťka-Hlozáková, T. 2016. Genetic variation and relationships of old maize genotypes (Zea mays L.) detected using SDS-PAGE. Potravinarstvo, vol. 10, no. 1, p. 532-536. https://doi.org/10.5219/661 DOI: https://doi.org/10.5219/661

Vyhnánek, T., Nevrtalová, E., Slezáková, K. 2009. Detection of the Genetic Variability of Triticale Using Wheat and Rye SSR Markers. Cereal Research Communications. vol. 37, no. 1, p. 23-29. https://doi.org/10.1556/CRC.37.2009.1.3 DOI: https://doi.org/10.1556/CRC.37.2009.1.3

Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinarstvo, vol. 9, no. 1, p. 393-397. https://doi.org/10.5219/509 DOI: https://doi.org/10.5219/509

Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z DOI: https://doi.org/10.1016/0888-7543(90)90195-Z

Weir, B. S. 1990. Genetic data analysis. Methods for discrete population genetic data. 2nd ed. Michigan : Sinauer Associates. 445 p. ISBN 9780878939022.

Žiarovská, J., Senková, S., Bežo, M., Ražná, K., Masnica, M., Labajová, M. 2013. ISSR markers as a tool to distinguish Idt and SSS populations of Zea mays L. Journal of Central European Agriculture, vol. 14, no. 2, p. 489-499. https://doi.org/10.5513/jcea01/14.2.1227 DOI: https://doi.org/10.5513/JCEA01/14.2.1227

Downloads

Published

2017-03-16

How to Cite

Vivodí­k, M. ., Gálová, Z. ., Balážová, Želmí­ra ., & Petrovičová, L. . (2017). Genetic variation of european maize genotypes (Zea mays L.) Detected using ssr markers. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 126–131. https://doi.org/10.5219/697

Most read articles by the same author(s)

1 2 > >>