Liquid chromatographic determination of polyphenenols in czech beers during brewing proces
DOI:
https://doi.org/10.5219/421Keywords:
beers, worts, brewing technology, polyphenols, HPLC, UV–VIS diode array detectionAbstract
High performance liquid chromatographic (HPLC/UV) method was adapted for simultaneous determination of seven polyphenols, including derivatives of benzoic (gallic and vanillic acids) and cinnamic acids (p-coumaric, ferulic and sinapic acids), flavan-3-ols (catechin) and flavonols (rutin) in worts and beers at the various stages of the brewing process. Based on the semi-quantitative HPLC analysis, total polyphenols chromatographic index (TPCI) was in the ranges of
5.18 - 19.4 mg/L and 7.37 - 20.7 mg/L for all worts and beers, respectively. The HPLC analyses showed that relatively high levels of (+)-catechin and gallic acid were in all the worts and the beers, while the values were much lower for ferulic acid, rutin, vanillic acid, sinapic acid and p-coumaric acid. Polyphenols with relatively high concentrations, that were detected in all tested worts and beers, were gallic acid (1.29 - 4.75 mg/L resp. 2.59 - 4.97 mg/L), (+)-catechin (1.66 - 7.95 mg/L resp. 4.70 - 10.0 mg/L) and ferulic acid (0.41 - 4.53 mg/L resp. 1.05 - 2.87 mg/L). On the other side, the sinapic acid
(0.72 - 1.59 mg/L resp. 0.72 - 2.5 mg/L), rutin (1.17 - 2.03 mg/L resp. 1.16 - 2.85 mg/L), p-coumaric acid
(ND - 4.73 mg/L resp. ND - 1.44 mg/L) and vanillic acid (ND - 1.52 mg/L resp. 0.75 - 1.81 mg/L) were detected in lowest concentrations. In both, worts and beers investigated in this study, the changes in the contents of individual polyphenols were not uniform. In the case of some polyphenols, a decrease in the content was observed after boiling the worts with hops or after the main fermentation until maturation and filtration, but with some polyphenols, the concentrations were constant until the end of the process or even increased.
Downloads
References
Andersen, M. L., Skibsted L. H., 2001. Modification of the levels of polyphenols in worth and beer by the additin of hexamethylentetramine or sulfite during mashing. Journal of Agriculture and Food Chemistry, vol. 49, no. 11, p. 5232-5237. PMid:11714309
Careri, M., Mangia, A., Musci, M. 1998. Overview of the applications of liquid chromatography mass spectrometry interfacing systems in food analysis: naturally occurring substances in food. Journal of Chromatography A, vol. 794, no. 1-2, p. 263-297. https://doi.org/10.1016/S0021-9673(97)00654-7
Chunsriimyatav, G., Valášek, P., Kubáň, V., Hoza, I. 2010a. A review on comparative analyse of different phenolic acids contents in different beers. Journal of Life Sciences, vol. 4, no. 4, p. 58-62.
Chunsriimyatav, G., Valášek, P., Kubáň, V., Hoza, I., 2010b. Review of the HPLC methods used for determination of polyphenols in beer. Chemické Listy, vol. 104, no. 16, p. 580-584. [cit. 2014-12-15] Available at: http://chemicke-listy.cz/docs/full/2010_s4_s535-s795.pdf
Chunsriimyatav, G., Valášek, P., Kubáň, V., Hoza, I. 2010c. HPLC analyses used in the determination of phenolic acids in beer. Chemické Listy, vol. 104, no. 16, p. 585-588. [cit. 2014-12-15] Available at: http://chemicke-listy.cz/docs/full/2010_s4_s535-s795.pdf
Cortacero-Ramı́rez, S., Hernáinz-Bermúdez de Astro, M., Segura-Carretero, A., Cruces-Blanco, C., Fernández-Gutiérrez, A. 2003. Analysis of beer components by capillary electrophoretic methods. Trends in Analytical Chemistry, vol. 22, no. 7, p. 440-454. https://doi.org/10.1016/S0165-9936(03)00704-0
Dvorakova, M., Guido, F., Dostalek, P., Skulilova, Z., Moreira, M. M., Barros, A. A. 2008. Antioxidant properties of free, soluble ester and insoluble-bound phenolic compounds in different barley varieties and corresponding malts. Journal of the Institute of Brewing, vol. 114, no. 1, p. 27-33. https://doi.org/10.1002/j.2050-0416.2008.tb00302.x
Floridi, S., Montanari, L., Marconi, O., Fantozzi, P. 2003. Determination of free phenolic acids in wort and beer by coulometric array detection, Journal of Agriculture and Food Chemistry, vol. 51, no. 6, p. 1548-1554. https://doi.org/10.1021/jf0260040
Gerhauser, C. 2005. Beer constituents as potential cancer chemopreventive agents. European Journal of Cancer, vol. 41, no. 13, p. 1941-1954. https://doi.org/10.1016/j.ejca.2005.04.012
Gerhauser, C., Becker, H. 2009. Phenolic Beer Compounds to Prevent Cancer. In: Preedy V. R. (Ed.), Beer in health and disease prevention. Academic Press, chapter 68, p. 669-684. https://doi.org/10.1016/B978-0-12-373891-2.00068-7
Guo, C. J., Cao, G. H., Sofic, E., Prior, R. L. 1997. High-performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: Relationship to oxygen radical absorbance capacity. Journal of Agriculture and Food Chemistry, vol. 45, no. 5, p. 1787-1796. https://doi.org/10.1021/jf960786d
Hayes, P. J., Smyth, M. R. 1987. Comparison of electrochemical and ultraviolet detection methods in high-performance liquid-chromatography for the determination of phenolic-compounds commonly found in beers. 1. Optimalization of operating parameters. Analyst, vol. 112, p. 1197-1204. https://doi.org/10.1039/AN9871201205
Kondo, K. 2004. Beer and health: Preventive effects of beer components on lifestyle-related diseases. BioFactors, vol. 22, no. 1-4, p. 303-310. https://doi.org/10.1002/biof.5520220160 PMid:15630301
Lu, J., Zhao, H., Chen, J. 2007. Evaluation of phenolic compounds and antioxidant activity during malting. Journal of Agriculture and Food Chemistry, vol. 55, no. 26, p. 10994-11001. https://doi.org/10.1021/jf0722710 PMid:18038990
Lugasi, A., Hovari, I. 2003. Antioxidant properties of commercial alcoholic and non-alcoholic beverages. Nahrung-Food, vol. 47, no. 2, p. 79-86. https://doi.org/10.1002/food.200390031 PMid:12744283
Madigan, D., McMurrough, I., Smyth, M. R. 1994. Rapid-determination of 4-vinyl guaiacol and ferulic acid in beers and worts by high-performance liquid chromatography. Journal of the American Society of Brewing Chemists, vol. 52, p. 152-155. https://doi.org/10.1094/ASBCJ-52-0152
Montanari, L., Peppetti, G., Natella, F., Guidi, A., Fantozzi F. 1999. Organic and phenolic acids in beer. Food Science and Technology-Lebensmittel-Wissenschaft und Technologie, vol. 32, no. 8, p. 535-539. https://doi.org/10.1006/fstl.1999.0593
Nardini, M., Ghiselli, A. 2004. Determination of free and bound phenolic acids in beer. Food Chemistry, vol. 84, no. 1, p. 137-143. https://doi.org/10.1016/S0308-8146(03)00257-7
Nardini, M., Natella, F., Scaccini, C., Ghiselli, A. 2006. Phenolic acids from beer are absorbed and extensively metabolized in humans. Journal of Nutrition and Biochemistry, vol. 17, no. 1, p. 14-22. PMid:16242314
Rehova L., Skerikova V., Jandera P. 2004. Optimisation of gradient HPLC analysis of phenolic compounds and flavonoids in beer using a CoulArray detector. Journal of Separation Science, vol. 27, no. 15-16, p 1345-1359. https://doi.org/10.1002/jssc.200401916 PMid:15587285
Roston, D. A., Kissinger, P. T. 1981. Identification of phenolic constituents in commercial beverages by liquid-chromatography with electrochemical detection. Analytical Chemistry, vol. 53, p. 1695-1699. PMid:7283161
Sánchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. C. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of Science Food Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
Skerikova V., Grynova L., Jandera P. 2004. Využití coulometrického detektoru coularray pro analýzu přírodních antioxidantů (Using CoulArray detector for analysis of natural phenolic compounds.) Chemické Listy, vol.98,
p. 343-348. [cit. 2014-11-12] Available at: http://www.chemicke-listy.cz/docs/full/2004_06_05.pdf
Vanbeneden N., Delvaux F., Delvaux F. R. 2006. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection. Journal of Chromatography A, vol. 1136, no. 2, p. 237-244. https://doi.org/10.1016/j.chroma.2006.11.001 PMid:17109870
Wang, C. C., Prasain, K. J., Barnes, S. 2002. Review of the methods used in the determination of phytoestrogens. Journal of Chromatography B, vol. 777, no. 1-2, p. 3-28. https://doi.org/10.1016/S1570-0232(02)00341-0
Whittle, N., Eldridge, H., Barley, J., Organ, G. 1999. Identification of the polyphenols in barley and beer by HPLC/MS and HPLC/electrochemical detection. Journal of the Institute of Brewing, vol. 105, no. 2, p. 89-99. https://doi.org/10.1002/j.2050-0416.1999.tb00011.x
Zhao, H., Chen, W., Lu, J., Zhao, M. 2010. Phenolic profiles and antioxidant activities of commercial beers. Food Chemistry, vol. 119, no. 3, p. 1150-1158. https://doi.org/10.1016/j.foodchem.2009.08.028
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).