Effect of sodium phosphates on selected food grade bacteria

Authors

  • Leona Buňková Department of Fat, Tenside and Cosmetics Technology. Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 275, 762 72 Zlí­n
  • Eva Lorencová Department of Fat, Tenside and Cosmetics Technology. Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 275, 762 72 Zlí­n
  • Dora Jurčová Department of Food Technology and Microbiology. Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 275, 762 72 Zlí­n
  • František Buňka Department of Food Technology and Microbiology. Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 275, 762 72 Zlí­n
  • Stanislav Kráčmar Department of Food Biochemistry and Analysis. Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 275, 762 72 Zlí­n

DOI:

https://doi.org/10.5219/141

Keywords:

gram-positive bacteria, gram-negative bacteria, sodium phosphate, antimicrobial effect

Abstract

The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi) on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates) did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

BORCH, E., LYCKEN, L., 2007. Influence of long-chain polyphosphate and heat treatment on Clostridium cochlearium and Clostridium sporogenes isolated from processed cheese spread. In Journal of Food Protection, vol. 70, 2007, p. 744-747. DOI: https://doi.org/10.4315/0362-028X-70.3.744

PMid:17388069

BRIOZZO, J., DE LAGARDE, E. A., CHIRIFE, J., PARADA, J. L., 1983. Clostridium botulinum type A growth and toxin production in media and process cheese spread. In Applied and Enviromental Microbiology, vol. 45, 1983, p. 1150-1152. DOI: https://doi.org/10.1128/aem.45.3.1150-1152.1983

PMid:6342535

BUŇKA, F., BUŇKOVÁ, L., 2009. Úloha tavicích solí při výrobě tavených sýrů. In Potravinářská revue, vol. 4, 2009, no. 1, p. 13-16.

BUŇKOVÁ, L., PLEVA, P., BUŇKA, F., VALÁŠEK, P., KRÁČMAR, S., 2008. Antibacterial effects of commercially available phosphates on selected microorganisms. In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 56, 2008, p. 19-24. DOI: https://doi.org/10.11118/actaun200856050019

ECKNER, K. F., DUSTMAN, W. A., RYSRODRIGUEZ, A. A., 1994. Contribution of composition, physicochemical characteristics and polyphosphates to the microbial safety of pasteurized cheese spreads. In Journal of Food Protection, vol. 57, 1994, p. 295-300. DOI: https://doi.org/10.4315/0362-028X-57.4.295

KNABEL, S., WALKER, H., HARTMAN, P., 1991. Inhibition of Aspergillus flavus and selected Gram-positive bacteria by chelation of essentials metal cationts by polyphosphates. In Journal of Food Protection, vol. 54, 1991, p. 360-365. DOI: https://doi.org/10.4315/0362-028X-54.5.360

LOESSNER, M. J., MAIER, S. K., SCHIWEK, P., SCHERER, S., 1997. Long-chain polyphosphates inhibit growth of Clostridium tyrobutyricum in processed cheese spreads. In Journal of Food Protection, vol. 60, 1997, p. 493-498. DOI: https://doi.org/10.4315/0362-028X-60.5.493

MAIER, S., SHERER, S., LOESSNER M., 1999. Long-chain polyphosphate cause cell lysis and inhibits Bacillus cereus septum formation, which is depent on divalent cationts. In Applied and Enviromental Microbiology, vol. 65, 1999, no. 9, p. 3942-3949. DOI: https://doi.org/10.1128/AEM.65.9.3942-3949.1999

PMid:10473399

MATSUOKA, A., TSUTSUMI, M., WATANABE, F., 1995. Inhibitory effect of hexameta-phosphate on the growth of Staphylococcus aureus. In Journal of the Food Hygienic Society of Japan, vol. 5, 1995, p. 588-594. DOI: https://doi.org/10.3358/shokueishi.36.588

MOLINS, R., 1991. Phosphates in Food. CRC Press, Inc.

MOLINS, R. A., KRAFT, A. A., WALKER, H. W., OLSON, D. G., 1985. Effect of poly- and pyrophosphates on the natural bacterial flora and inoculated Clostridium sporogenes PA 3679 in cooked vacuum packaged bratwurst. In Journal of Food Science, vol. 50, 1985, p. 876-880.

https://doi.org/10.1111/j.1365-2621.1985.tb12970.x DOI: https://doi.org/10.1111/j.1365-2621.1985.tb12970.x

SAMPATHKUMAR, B., KHACHATOURIANS, G., KORBER, R., 2003 High pH during trisodium phosphate treatment causes membrane damage and destruction of Salmonella enterica ser. Enteritidis. In Food & Nutrition Press, vol. 69, 2003, no.1, p. 122-129. DOI: https://doi.org/10.1128/AEM.69.1.122-129.2003

PMid:12513986

VARGA, L., 2005. Use a long-chain polyphosphate mixture for shelf-life extension of processed cheese spreads. In Acta Alimentaria, vol. 34, 2005, p. 493-498.

https://doi.org/10.1556/AAlim.34.2005.4.16 DOI: https://doi.org/10.1556/AAlim.34.2005.4.16

Downloads

Published

2011-03-13

How to Cite

Buňková, L. ., Lorencová, E. ., Jurčová, D. ., Buňka, F. ., & Kráčmar, S. . (2011). Effect of sodium phosphates on selected food grade bacteria. Potravinarstvo Slovak Journal of Food Sciences, 5(2), 9–12. https://doi.org/10.5219/141

Most read articles by the same author(s)

1 2 3 > >>