Effect of thermal treatment on rutin content in selected buckwheat products using calcium as an internal tracer

Authors

  • Eliška Krejzová Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, 611 37 Brno
  • Miroslava Bittová Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, 611 37 Brno
  • Stanislav Kráčmar College of Business and Hotel Management, Department of Gastronomy, Bosonožská 9, 625 00 Brno
  • Petra Vojtí­šková Thomas Bata University in Zlí­n, Faculty of Technology, Department of Food Technology, Vavrečkova 275, 762 72 Zlí­n
  • Vlastimil Kubáň Kubáň Thomas Bata University in Zlí­n, Faculty of Technology, Department of Food Technology, Vavrečkova 275, 762 72 Zlí­n
  • Jozef Golian Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/853

Keywords:

rutin, buckwheat, Fagopyrum esculentum Moench, effect of thermal treatment, calcium, internal tracer

Abstract

Reversed-phase high-performance liquid chromatography (RP-HPLC) was used for rutin (quercetin-3-rutinoside) determination in selected buckwheat products (whole meal flour, broken seeds, seed hulls, herbs and baked cereal breads). The effect of various thermal procedures on content of rutin was evaluated using calcium as an internal tracker to correct changes in mass and composition of the buckwheat products. These factors are very seldom taken into account. The results show non-significant changes in rutin levels obtained in whole meal flour and broken seed samples after thermal treatment up to 150°C. Higher temperature already caused sudden fall in the observed rutin concentrations. The evaporation of some volatile compounds and degradation products can decrease the mass of the samples and formally increase the content of rutin (35.5 ±4.7 mg per 100 g for whole meal flour and 10.2 ±0.4 mg per100 g for broken seeds at 150°C). Serious decrease of rutin contents at elevated temperatures (>150°C) can be explained by its degradation (by breaking off the C-C bond in quercetin-3-rutinoside moiety) and/or evaporation (24.3 ±1.4 mg per 100 g for whole meal flour and 3.06 ±0.3 mg per100 g for broken seeds at 180°C). In case of baked cereal breads the level of rutin changed in dependence on the ratio between buckwheat and corn flour. Longer time leaching and higher temperature implicate higher rutin content in infusions prepared from buckwheat seed hulls and herbs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N., Latif, M. S. Z., Randhawa M. A. 2014. Phytochemicals and biofunctional properties of buckwheat: A review. J. Agr. Sci., vol. 152, p. 349-369. https://doi.org/10.1017/S0021859613000166 DOI: https://doi.org/10.1017/S0021859613000166

Biney, K., Beta, T. 2014. Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT - Food Sci. Technol., vol. 57, p. 569-579. https://doi.org/10.1016/j.lwt.2014.02.033 DOI: https://doi.org/10.1016/j.lwt.2014.02.033

Blanszczak, W., Zielinska, D., Zielinski, H., Szawara-Nowak, D., Fornal, J. 2013. Antioxidant properties and rutin content of high pressure-treated raw and roasted buckwheat groats. Food Bioprocess Tech., vol. 6, p. 92-100. https://doi.org/10.1007/s11947-011-0669-5 DOI: https://doi.org/10.1007/s11947-011-0669-5

Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., Zagrodzki, P. 2012. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT - Food Sci. Technol., vol. 46, p. 548-555. https://doi.org/10.1016/j.lwt.2011.11.009 DOI: https://doi.org/10.1016/j.lwt.2011.11.009

Deineka, V. I., Grigorev, A. M., Staroverov, V. M. 2004. HPLC analysis of flavonoids: determining rutin in plant extracts. Pharm. Chem. J., vol. 38, p. 23-25. https://doi.org/10.1007/s11094-004-0004-9 DOI: https://doi.org/10.1007/s11094-005-0021-3

Choy, A. L., Morrison, P. D., Hughes, J. G., Marriott, P. J., Small, D. M. 2013. Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour, J. Cereal Sci., vol. 57, p. 281-287. https://doi.org/10.1016/j.jcs.2012.11.007 DOI: https://doi.org/10.1016/j.jcs.2012.11.007

Fessas, D., Signorelli, M., Pagani, A., Mariotti, M., Iametti, S., Schiraldi, A. 2008. Guidelines for buckwheat enriched bread - thermal analysis approach. J. Therm. Anal. Calorim., vol. 91, p. 9-16. https://doi.org/10.1007/s10973-007-8594-6 DOI: https://doi.org/10.1007/s10973-007-8594-6

Guo, X. D., Ma, Y. J., Parry, J., Gao, J. M., Yu, L. L., Wang, M. 2011. Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules, vol. 16, p. 9850-9867. https://doi.org/10.3390/molecules16129850 DOI: https://doi.org/10.3390/molecules16129850

Guo, X. D., Wu, Ch. S., Ma., Y. J., Parry, J., Xu, Y. Y., Liu, H., Wang, M. 2012. Comparison of milling fractions of tartary buckwheat for their phenolics and antioxidant properties. Food Res. Int., vol. 49, p. 53-59. https://doi.org/10.1016/j.foodres.2012.07.019 DOI: https://doi.org/10.1016/j.foodres.2012.07.019

Inglett, G. E., Chen, D., Berhow, M., Lee, S. 2011. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions, Food Chem., vol. 125, p. 923-929. https://doi.org/10.1016/j.foodchem.2010.09.076 DOI: https://doi.org/10.1016/j.foodchem.2010.09.076

Kreft, I., Fabjan, N., Yasumoto, K. 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem., vol. 98, p. 508-512. https://doi.org/10.1016/j.foodchem.2005.05.081 DOI: https://doi.org/10.1016/j.foodchem.2005.05.081

Li, Y. Q., Zhou, F. Ch., Gao, F., Bian, J. S., Shan, F. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase, J. Agric. Food Chem., vol. 57, p. 11463-11468. https://doi.org/10.5219/189 DOI: https://doi.org/10.1021/jf903083h

Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., Mau, J. L. 2009. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem., vol. 112, p. 987-991. https://doi.org/10.1016/j.foodchem.2008.07.022 DOI: https://doi.org/10.1016/j.foodchem.2008.07.022

Roberta, R., Pellegrini, N. Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med., vol. 26, p. 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

Shanno, R. L. 1946. Rutin - a new drug for the treatment of increased capillary fragility. Am. J. Med. Sci., vol. 211, p. 539-543. DOI: https://doi.org/10.1097/00000441-194621150-00003

Sharma, S., Ali, A., Ali, J., Sahni, J. K., Baboota, S. 2013. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin. Inv. Drug, vol. 22, p. 1063-1079. https://doi.org/10.1517/13543784.2013.805744 DOI: https://doi.org/10.1517/13543784.2013.805744

Singleton, V. L., Rossi, Jr., J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Viticult, vol. 16, p. 144-159.

Verardo, V., Arráez-Román, D., Segura-Carretero, A., Marconi, E., Fernández-Gutiérrez, A., Fiorenza Caboni, M. 2011. Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: Effect of thermal processing. J. Agric. Food Chem., vol. 59, p. 7700-7707. https://doi.org/10.1021/jf201069k PMid:21678994 DOI: https://doi.org/10.1021/jf201069k

Vogrincic, M., Timoracka, M., Melichacova, S., Vollmannova, A., Kreft, I. 2010. Degradation of rutin and polyphenols during the preparation of tartary buckwheat bread, J. Agric. Food Chem., vol. 58, p. 4883-4887. https://doi.org/10.1021/jf9045733 DOI: https://doi.org/10.1021/jf9045733

Vojtišková, P., Švec., P., Kubáň, V., Krejzová, E., Bittová, M., Kráčmar, S., Svobodová, B. 2014. Chemical composition of buckwheat plant parts and selected buckwheat products. Potravinarstvo, vol. 8, p. 247-253. https://doi.org/10.5219/385 DOI: https://doi.org/10.5219/385

Zhang, M., Chen, H., Li, J., Pei, Y., Liang, Y. 2010. Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT - Food Sci. Technol., vol. 43, p. 181-185. https://doi.org/10.1016/j.lwt.2009.06.020 DOI: https://doi.org/10.1016/j.lwt.2009.06.020

Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W. T., Wu, Y. M. 2012. Bioactive compounds in functional buckwheat food. Food Res. Int., vol. 49, p. 389-395. https://doi.org/10.1016/j.foodres.2012.07.035 DOI: https://doi.org/10.1016/j.foodres.2012.07.035

Zielinski, H., Michalska, A., Amigo-Benavent, M., Dolores del Castillo, M., Piskula, M. K. 2009. Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J. Agric. Food Chem., vol. 57, p. 4771-4776. https://doi.org/10.1021/jf900313e DOI: https://doi.org/10.1021/jf900313e

Downloads

Published

2017-12-08

How to Cite

Krejzová, E. ., Bittová, M. ., Kráčmar, S. ., Vojtí­šková, P. ., Kubáň, V. K. ., & Golian, J. . (2017). Effect of thermal treatment on rutin content in selected buckwheat products using calcium as an internal tracer. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 679–684. https://doi.org/10.5219/853

Most read articles by the same author(s)

1 2 3 4 5 > >>