Tin compounds in food - their distribution and determination
DOI:
https://doi.org/10.5219/1041Keywords:
Foods, tin, speciation of organotin, HG-ICP-OES, HPLC-ETA-AASAbstract
The aim of this work was optimization of the methods of trace- and ultratrace analysis, such as ICP-OES, ETA-AAS for charting the resources of individual forms of tin in foodstuffs. Increase of the sensitivity of the method of ICP-OES was achieved using the techniques of generation of hydrides, which was also optimized. Based on the information available on the occurrence of the different forms of tin, it appears that many of these organometallic compounds are contained in marine animals; attention has mainly focused on organisms such as marine fish, crustaceans, molluscs and algae. Tin compounds of predominantly inorganic origin can be found in foods and beverages which are packed in cans with a protective tin coating, too. The above mentioned methods have been applied to the analysis of selected beverages with low content of tin such as Coca Cola, Sprite, Fanta, Gambrinus 10°, PowerKing, and milk in the cans. Furthermore samples of animal origin as Sardines in oil, and Hunter's salami were examined, too. Prior to the determination of tin, samples need to be appropriately modified or analysed. Decomposition of the samples was done in the microwave system. Low pressure ion exchange chromatography with on-line detection of ICP-OES was used for separation of inorganic tin compounds. Separation of organically bound tin compounds was performed by HPLC on a column of ACE C-18, 3 µm, 15 cm × 1.0 mm with off-line detection by ETA-AAS. All of the above forms of tin compounds can be separated with this column. Due to the improvement in the detection of organically bounded tin, HPLC with identical ACE C-18 column coupled online for example with ICP-MS or spectrofluorimetry could be recommended.
Downloads
Metrics
References
Chen, H., Yao, W., Wu, D., Brindle, I. D. 1996. Determination of tin in steels by non-dispersive atomic fluorescence spectrometry coupled with flow-injection hydride generation in the presence of L-cysteine. Spectrochimica Acta Part B, vol. 51, no. 14, p. 1829-1836. https://doi.org/10.1016/S0584-8547(96)01563-7 DOI: https://doi.org/10.1016/S0584-8547(96)01563-7
Commission Regulation (EC) 2006. No 1881/2006 of 19th December setting the maximal levels for certain contaminants in foodstuffs.
Da Costa, S. S. L., Pereira, A. C. L., Passos, E. A., Alves, J. P. H., Garcia, C. A. B., Araujo, R. G. O. 2013. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP-OES. Talanta, vol. 108, p. 157-164. https://doi.org/10.1016/j.talanta.2013.03.002 DOI: https://doi.org/10.1016/j.talanta.2013.03.002
Dantas, A. N. S., Matos, W. O., Gouveia, S. T., Lopes, G. S. 2013 The combination of infrared and microwave radiation to quantify trace elements in organic samples by ICP-OES. Talanta, vol. 107, p. 292-296. https://doi.org/10.1016/j.talanta.2013.01.047 DOI: https://doi.org/10.1016/j.talanta.2013.01.047
Gonzáles-Toledo, E., Benzi, M., Compañó, R., Granados, M., Prat, M. D. 2001. Speciation of organotin compounds in shellfish by liquid chromatography – fluorimetric detection, Analytica Chimica Acta, vol. 443, no. 2, p. 183-190. https://doi.org/10.1016/S0003-2670(01)01205-3 DOI: https://doi.org/10.1016/S0003-2670(01)01205-3
Greenwood, N. N., Earnshaw, A. 1993. Chemistry of elements I. (Chemie prvků I.). 1st ed., Prague, Czech Republic : Informatorium, 488 p. ISBN 80-85427-38-9. (In Czech)
Hoch, M. 2001. Organotin compounds in the environment – an overview. Applied Geochemistry, vol. 16, no. 7 – 8, p. 719-743. https://doi.org/10.1016/S0883-2927(00)00067-6 DOI: https://doi.org/10.1016/S0883-2927(00)00067-6
Hosick, T. J., Ingamells, R. L., Machemer, S. D. 2002. Determination of tin in soil by continuous hydride generation and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, vol. 456, no. 2, p. 263-269. https://doi.org/10.1016/S0003-2670(02)00049-1 DOI: https://doi.org/10.1016/S0003-2670(02)00049-1
Mader, P., Čurdová, E. 1997. Metody rozkladu biologických materiálů pro stanovení stopových prvků (Methods of decomposition of biological materials for trace elements determination). Chemické listy, vol. 91, p. 227-236. (In Czech)
Pawlik-Skowronska, B., Kaczorowska, R., Skowronski, T. 1997. The impact of inorganic tin on the planktonic cyanobacterium synechocystis aquatilis, the effect of pH and humic acid . Environmental Pollution, vol. 97, no. 1-2, p.65-69. https://doi.org/10.1016/S0269-7491(97)00074-2 DOI: https://doi.org/10.1016/S0269-7491(97)00074-2
Perring, L., Basic-Dvorzak, M. 2002. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy, Analytical Bioanalytical Chemistry., vol. 374, no. 2, p.235-243. https://doi.org/10.1007/s00216-002-1420-x DOI: https://doi.org/10.1007/s00216-002-1420-x
Rüdel, H. 2003. Case study: Bioavailability of tin and tin compounds. Ecotoxicology and Environmental Safety, vol. 56, no. 1, p. 180-189. https://doi.org/10.1016/S0147-6513(03)00061-7 DOI: https://doi.org/10.1016/S0147-6513(03)00061-7
Schiavo, D., Trevizan, L. C., Filho, E. R. P., Nóbrega, J. A. 2009. Evaluation of the use multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing, Spectrochimica. Acta Part B: Atomic Spectroscopy, vol. 64, no. 6, p. 544-548. https://doi.org/10.1016/j.sab.2009.05.009 DOI: https://doi.org/10.1016/j.sab.2009.05.009
Simon, S., Bueno, M., Lespes, G., Mench, M., Potin-Gautier, M. 2002. Extraction procedure for organotin analysis in plant matrices: optimisation and application. Talanta, vol. 57, no. 1, p. 31-43. https://doi.org/10.1016/S0039-9140(01)00669-5 DOI: https://doi.org/10.1016/S0039-9140(01)00669-5
Velíšek, J. 1999. Food Chemistry (Chemie potravin II.). 1st ed. Tábor, Czech Republic : OSIS, 109 p. ISBN 80-902391-4-5. (In Czech)
White, S., Catterick, T., Fairman, B., Webb, K. 1998, Speciation of Organo-tin compounds using liquid chromatography – atmospheric pressure ionisation mass spectrometry and liquid chromatography-inductively coupled plasma mass spectrometry as complementary techniques. Journal of chromatography A, vol. 794, no. 1-2, p. 211-218. https://doi.org/10.1016/S0021-9673(97)00805-4 DOI: https://doi.org/10.1016/S0021-9673(97)00805-4
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.