The influence of chosen organic fertilizers on qualitative parameters of three Daucus carota L. varieties
DOI:
https://doi.org/10.5219/1423Keywords:
total carotenoids, antioxidant, fertilizer, vegetable, qualityAbstract
In rational nutrition, vegetables play an important role due to their high biological and low energy value. The most widespread vegetables in our country belong to root vegetables. They are grown mainly for bulbs, corms, rhizomes, fleshy roots, and hypocotyl tubers. Root vegetables can be eaten raw or cooked. Carrot (Daucus carota L.) is a basic representative of root vegetables. For the most valuable components counts beta-carotene – the major component of total carotenoids. This paper evaluates changes in total carotenoids, refractometric dry matter, and gravimetric dry matter in three varieties of carrot (Kamaran F1, Komarno F1, Romosa) grown in soil and climatic conditions ex-situ in Nitra. We have evaluated roots grown in non-fertilized soil, soil after application of manure, horticultural compost, and their combinations. The results show that the variants fertilized with compost and a mixture of compost and manure had the most considerable influence on the synthesis and content of total carotenoids as well as the content of dry matter and refractometric dry matter
Downloads
Metrics
References
Amorim-Carrilho, K. T., Cepeda, A., Fente, C., Regal, P. 2014. Review of methods for analysis of carotenoids. TrAC-Trends Anal. Chem, vol. 56, no. 2014, p. 49-73. https://doi.org/10.1016/j.trac.2013.12.011 DOI: https://doi.org/10.1016/j.trac.2013.12.011
Bach, V., Kidmose, U., Kristensen, H. L., Edelenbos, M. 2015. Eating Quality of Carrots (Daucus carota L.) Grown in One Conventional and Three Organic Cropping Systems over Three Years. Journal of Agricultural and Food Chemistry, vol. 63, p. 9803-9811. https://doi.org/10.1021/acs.jafc.5b03161 DOI: https://doi.org/10.1021/acs.jafc.5b03161
Bejo, Z. 2016. Catalogue of vegetableseeds. Bejo Bohemia, p. 75.
Biehler, E., Mayer, F., Hoffmann, L., Krause, E., Bohn, T. 2010. Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in FrequentlyConsumedFruits and Vegetables. Journal of Food Science, vol. 75, no. 1, p. 55-61. https://doi.org/10.1111/j.1750-3841.2009.01417.x DOI: https://doi.org/10.1111/j.1750-3841.2009.01417.x
Dhillon, H., Dhillon, T., Devi, R. 2016. Quality Characterization in Carrot (Daucuscarota L.) Germplasm. Indian Journal of Ecology, vol. 43, no. 1, p. 000-000.
Ergun, M., Süslüoğlu, Z. 2018. Evaluating carrot as a functional food. Middle East Journal of Science, vol. 4, no. 2, p. 113-119. https://doi.org/10.23884/mejs.2018.4.2.07 DOI: https://doi.org/10.23884/mejs.2018.4.2.07
Evers, A. M. 1989. Effects of different fertilization practices on the carotene content of carrot. Agricultural and Food Science, vol. 61, no. 1, p. 7-14. https://doi.org/10.23986/afsci.72347 DOI: https://doi.org/10.23986/afsci.72347
Evrendilek, G., Ozdemir, P. 2019. Effect of various forms of non-thermal treatment of thequality and safety in carrots. LWT, vol. 105, no. 2019, p. 344-354. https://doi.org/10.1016/j.lwt.2019.02.031 DOI: https://doi.org/10.1016/j.lwt.2019.02.031
Fanlégué, C., Touré, A., Casimir, S., Adama, C., Réné, S. 2018. Physicochemical and Nutritional Properties of Varieties of Carrot (Daucus carota) grown in Region of Korhogo, North of Côted’Ivoire. International Journal of Environment, Agriculture and Biotechnology, vol. 3, no. 3, p. 792-798. https://doi.org/10.22161/ijeab/3.3.11 DOI: https://doi.org/10.22161/ijeab/3.3.11
FAOSTAT. 2020. Available at: http://www.fao.org/faostat/en/.
Fikselová, M., Šilhár, S., Mareček, J., Frančáková, H. 2008. Extraction of carrot (Daucus carota L.) Carotenes under different conditions. Czech J. Food Sci., vol. 26, no. 4, p. 268-274. https://doi.org/10.17221/9/2008-CJFS DOI: https://doi.org/10.17221/9/2008-CJFS
Gills, L. A., Resurreccion, A. V. A., Hurst, W. C., Reynolds, A. E., Phatak, S. C. 1999. Sensory profiles of carrot (Daucus carota L.) cultivars grown in Georgia. Hort. Science, vol. 34, no. 4, p. 625-628. https://doi.org/10.21273/hortsci.34.4.625 DOI: https://doi.org/10.21273/HORTSCI.34.4.625
Gopalan, C., Rama Sastry, B. V., Balasubramanian, S. C. 1991. Nutritivevalue of Indianfoods. Hyderabad : National Institute of Nutrition, p. 47.
Hegedűsová, A., Mezeyová, I., Andrejiová, A. 2015. Metódy stanovenia vybraných biologicky aktívnych látok (Determination methods of selected biologically active substances). Nitra, Slovak Republic : SUA, p. 72. ISBN 978-80-552-1420-7. (in Slovak)
Hochmuth, G., Brecht, J., Bassett, M. 1999. Nitrogen Fertilization to Maximize Carrot Yield and Quality on a SandySoil. Hort. Science: a publication of the American Society for Horticultural Science, vol. 34, no. 4, p. 641-645. https://doi.org/10.21273/HORTSCI.34.4.641 DOI: https://doi.org/10.21273/HORTSCI.34.4.641
Holley, S. L., Edwards, C., Thorngate, J., Fellman, J., Matiinson, D. S., Sorensen, E. J., Dougherty, R. H. 2007. Chemical Characterization of differentlines of Daucus Carota L. Roots. Journal of Food Quality, vol. 23, no. 2000, p. 487-502. https://doi.org/10.1111/j.1745-4557.2000.tb00574.x DOI: https://doi.org/10.1111/j.1745-4557.2000.tb00574.x
Jabbar, S., Abid, M., Hu, B., Hashim, M., Lei, S., Wu, T., Zeng, X. 2015. Exploring the potential of thermosonication in carrot juice processing. Journal of Food Science and Technology, vol. 52, no. 11, p. 7002-7013. https://doi.org/10.1007/s13197-015-1847-7 DOI: https://doi.org/10.1007/s13197-015-1847-7
Kaur, A., Sogi, D. S. 2016. Effect of osmotic dehydration on physico‐chemical properties and pigment content of carrot (Daucus carota L) during preserve manufacture. J. Food Proces. Preserv., vol. 41, p. 1-6. https://doi.org/10.1111/jfpp.13153 DOI: https://doi.org/10.1111/jfpp.13153
Kiraci, S., Padem, H. 2016. The Selection of Purple Carrot Lines Has Superior Technological Characteristics in Turkey. Acta Scientiarum Polonorum. Hortorumcultus = Ogrodnictwo, vol. 15, no. 1, p. 89-99.
Kopec, R. E., Riedl, K. M., Harisson, E. H., Curley, R. W., Hruszkewycz, D. P., Clinton, S. K., Schwartz, S. J. 2010. Identification and Quantification of Apo-lycopenals in Fruits, Vegetables, and Human Plasma. Journal of Agricultural and Food Chemistry, vol. 58, no. 6, p. 3290-3296. https://doi.org/10.1021/jf100415z DOI: https://doi.org/10.1021/jf100415z
Kovács, A., Krempet, R., Jakab, A., Szabó, A. 2012. Organic and mineral fertilizer effects on theyield and mineralcontents of carrot (Daucus carota). International Journal of Horticultural Science, vol. 18, no. 1, p. 69-74. https://doi.org/10.31421/IJHS/18/1/996 DOI: https://doi.org/10.31421/IJHS/18/1/996
Kulczyński, B., Gramza-Michałowska, A. 2019. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules, vol. 24, no. 18, p. 3212. https://doi.org/10.3390/molecules24183212 DOI: https://doi.org/10.3390/molecules24183212
Longvah, C., Ananthan, R., Bhaskarachary, K.,Venkaiah, K. 2017. Indian Food Composition Tables. Hyderabad: National Institute of Nutrition, p. 52.
Machewad, G. M., Kulkarni, D. N., Pawar, V. D., Surve, V. D. 2003. Studies on dehydration of carrot (Daucus carota L.). Journal of Food Science and Technology, vol. 40, no. 4, p. 406-408.
Miękus, N., Iqbal, A., Marszałek, K., Puchalski, C., Świergiel, A. 2019. Green Chemistry Extractions of Carotenoids from Daucus carota L. – Super critical Carbon Dioxide and Enzyme – Assisted Methods. Molecules, vol. 24, no. 23, p. 4339. https://doi.org/10.3390/molecules24234339 DOI: https://doi.org/10.3390/molecules24234339
Nadulski, R., Grochowicz, J., Sobczak, P., Kobus, Z., Panasiewicz, M., Zawiślak, K., Mazur, J., Starek, A., Żukiewicz-Sobczak, W. 2014. Application of Freezing and Thawing to Carrot (Daucus carota L.) Juice Extraction. Food and Bioprocess Technology, vol. 8, no. 1, p. 218-227. https://doi.org/10.1007/s11947-014-1395-6 DOI: https://doi.org/10.1007/s11947-014-1395-6
Oberbeil, K., Lentzová, C. 2003. Ovoce a zelenina jako lék (Fruits and Vegetablesas a Medicine: The Dietthatheals). Prague, Czech Republic : Fortuna Print, vol. 2, p. 294. ISBN: 80-7321-067-3. (in Czech)
Rodríguez-Concepción, M., Stange, C. 2013. Biosynthesis of carotenoids in carrot: An underground story comes to light. Archives of biochemistry and biophysics, vol. 539, no. 2, p. 110-116. https://doi.org/10.1016/j.abb.2013.07.009 DOI: https://doi.org/10.1016/j.abb.2013.07.009
Saha, S., Kalia, P., Sureja, A., Sarkar, S. 2016. Breeding tropical carrots (Daucus carota) for enhanced nutrition and high temperature stress. Indian Journal of Agricultural Sciences, vol. 86, no. 7, p. 940-945.
Santana‐Gálvez, J., Santacruz, A., Cisneros‐Zevallos, L., Jacobo‐Velázquez, D. A. 2019. Postharvest Wounding Stress in Horticultural Crops as a Tool for Designing Novel Functional Foods and Beverages with Enhanced Nutraceutical Content: Carrot Juice as a Case Study. Journal of Food Science, vol. 84, no. 5, p. 1151-1161. https://doi.org/10.1111/1750-3841.14588 DOI: https://doi.org/10.1111/1750-3841.14588
Santos, C. A., Simon, P. W. 2006. Heritabilities and Minimum Gene Number Estimates of Carrot Carotenoids. Euphytica, vol. 151, no. 1, p. 79-86. https://doi.org/10.1007/s10681-006-9130-7 DOI: https://doi.org/10.1007/s10681-006-9130-7
Seljåsen, R., Kristensen, H. L., Lauridsen, C., Wyss, G. S., Kretzschmar, U., Birlouez-Aragone, I., Kahl, J. 2013. Quality of carrots as affected by pre – and postharvest factors and processing. J. Sci. Food Agric., vol. 93, no. 11, p. 2611-2626. https://doi.org/10.1002/jsfa.6189 DOI: https://doi.org/10.1002/jsfa.6189
Seljåsen, R., Lea, P., Torp, T., Riley, H., Berentsen, E., Thomsen, M., Bengtsson, G. B. 2012. Effects of genotype, soil type, year and fertilisation on sensory and morphological attributes of carrots (Daucus carota L.). Journal Sci. Food Agric., vol. 92, no. 8, p. 1786-1799. https://doi.org/10.1002/jsfa.6189 DOI: https://doi.org/10.1002/jsfa.5548
Simon, P. W. 1982. Genetic variation for volatile terpenoids in roots of carrot, Daucus carota, backcrosses and F2 generations. Phytochemistry, vol. 21, p. 875-879. DOI: https://doi.org/10.1016/0031-9422(82)80084-8
Simon, P. W., Goldman, I. L. 2007. Carrot. In Singh, R. J. Genetic Resources, Chromozome Engineering a Crop Improvement Series, vol. 3. p. 497-517. ISBN 9780367389956. https://doi.org/10.1002/jsfa.5548 DOI: https://doi.org/10.1201/9781420009569.ch11
Smoleń, S., Sady, W. 2009. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Scientia Horticulturae, vol. 120, no. 3, p 315-324. https://doi.org/10.1016/j.scienta.2008.11.029 DOI: https://doi.org/10.1016/j.scienta.2008.11.029
Šapiro, D. K., Raab, Č. 1988. Ovoce a zelenina ve výživě člověka (Fruits and Vegetables in human Nutrition). Praque, Czech Republic : Státní zemědělské nakladatelství, p. 226- 227. ISBN: 5-7860-0431-7. (in Czech)
Valšíková, M., Šlosár, M., Ryban, R., Shehata, S., Hegedűsová, A. 2013. Changes in Vitamin C Content and SolubleSolids of Carrot Content (Daucus carota L.) During Storage. Acta Horticulturae et Regiotecturae, vol. 16, no. 1, p. 1-3. https://doi.org/10.2478/ahr-2013-0001 DOI: https://doi.org/10.2478/ahr-2013-0001
Vargová, E. 2003. Zeleninárstvo (Vegetable production). Nitra: SPU, vol. 1, p. 129, ISBN: 80-8069-218-1. (in Slovak)
Yawalker, K. S. 1985. Vegetable Crops in India. 3rd ed. Nagpur India : Agricultural Horticultural Publishing House, p. 166-170.
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.