Use of some biostimulants to improve the growth and chemical constituents of sweet pepper


  • Rabab Maraei Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298
  • Noha Eliwa Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298
  • Amina Aly Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298



sweet pepper, fulvic acid, algae, vegetative growth, fruit characteristics


The experiment was conducted during two successive seasons 2016 and 2017 on sweet pepper plants to study the effect of foliar application of some natural extracts (fulvic acid at 2, 4 and 6% or algae at 1, 2 and 4 g.L-1) were applied three times along each season (after 2, 4 and 6 weeks of planting). The influence was evaluated through the response of vegetative growth, and some physical and chemical characteristics of sweet pepper fruits. The results obtained showed that the algae extract at 1 g.L-1 in most cases was better than the other spray treatments investigated to improve most fruit characteristics (length, diameter and yield of fruits), vegetative growth, and chemical properties followed by 6% fulvic acid. With regard to organic acids, malic and citric acids are the main organic acids found in sweet pepper. Malic, succinic and glutaric acids were higher in 1 g.L-1 algae extract treatment, but the concentration of citric acid was higher in 6% fulvic acid treatment. Therefore, algae extract and fulvic acid could be safely recommended as a natural biostimulants application for improving most desirable characteristics of sweet pepper grown under the same experimental condition.


Download data is not yet available.


Metrics Loading ...


Abed El Hamied, A. S. 2014. Improving growth and productivity of “Sukkary” mango trees grown in North Sinai using extracts of some brown marine algae, yeast and effective microorganisms. 1-Mineral content of leaves and fruit growth aspects. Middle East J. Agric. Res., vol. 3, no. 2, p. 318-329.

Ahmed, F. F., Kamel, M. K., Ibrahim, H. I. M. 2014. The synergistic effects of using plant extracts and salicylic acid on yield and fruit quality of keitte mango trees. Stem Cell., vol. 5, p. 30-39.

Akladious, S. A., Mohamed, H. I. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic., vol. 236, p. 244-250. DOI:

Aminifard, M. H., Aroiee, H., Nemati, H., Azizi, M., Jaafar, H. Z. E. 2012. Fulvic acid affects pepper antioxidant activity and fruit quality. Afr. J. Biotechnol., vol. 11 , p. 13179-13185. DOI:

Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C., Metzger, J. D. 2004. Influences of vermicomposts on field strawberries-1. Effects on growth and yields. Bioresource Technol., vol. 93, no. 2, p. 145-153. DOI:

Battacharyya, D., Babgohari, M. Z., Rathor, P., Prithiviraj, B. 2015. Seaweed extracts as biostimulants in horticulture. Sci Hortic., vol. 196, p. 39-48. DOI:

Bezuglova, O. S., Polienko, E. A., Gorovtsov, A. V., Lyhman, V. A., Pavlov, P. D. 2017. The effect of humic substances on winter wheat yield and fertility of ordinary chernozem. Ann. Agrar. Sci., vol. 15, no. 2, p. 239-242. DOI:

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., vol. 72, no. 1-2, p. 248-254. DOI:

Brown, P., Saa, S. 2015. Biostimulants in agriculture. Front. Plant. Sci., vol. 6, p. 671. DOI:

Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., Ferrante, A. 2015. Biostimulants and crop responses: a review. Biol. Agric. Hortic., vol. 31, no. 1, p. 1-17. DOI:

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P. 2015. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic., vol. 196, p. 15-27. DOI:

Chew, Y. L., Goh, J. K., Lim, Y. Y. 2009. Assessment of in-vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem., vol. 116, no. 1, p. 13-18. DOI:

Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., Rouphael, Y. 2015. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic., vol. 196, p.28-38. DOI:

Craigie, J. S. 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol., vol. 23, no. 3, p. 371-93. DOI:

Dorais, M., Ehret, D. L., Papadopoulos, A. P. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem. Rev., vol. 7, p. 231-250. DOI:

Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic., vol. 196, p. 3-14. DOI:

Duncan, D. B. 1955. Multiple range and multiple ’F’ tests. Biometrics., vol. 11, no. 1, p. 1-42. DOI:

Esringu, A., Aksakal, O., Tabay, D., Kara, A. 2016. Effects of sodium nitroprusside (SNP) pre-treatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings. Environ. Sci. Pollut. Res. Int., vol. 23, no. 1, p. 589-597. DOI:

Giovanni, M., Angela, G. L., Antonino, L. M. 2011. The effect of organic supplementation of solarized soil on the quality of tomato fruit. Sci Hortic., vol. 129, no. 2, p. 189-196. DOI:

Gollan, J. R., Wright, J. T. 2006. Limited grazing pressure by native herbivores on the invasive seaweed caulerpa. Taxi folia in a temperate. Mar. Freshw. Res., vol. 57, no. 7, p. 685-694. DOI:

Hamideh, G., Samavat, S., Ardebili, Z. O. 2013. The alleviating effects of humic substances on photosynthesis and yield of Plantago ovate in salinity conditions. Intl. Res. J. Appl. Basic. Sci., vol. 4, p. 1683-1686.

Hammerschmidt, R., Nuckles, E., Kuc, J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant. Pathol., vol. 20, no. 1, p. 73-82. DOI:

Jagota, S. K. and Dani, H. 1982. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem., vol. 127, no. 1, p. 178-182. DOI:

Jensen, W. B. 2007. The origin of the names malic, maleic, and malonic acid. J. Chem. Educ., vol. 84, no. 6, p. 924. DOI:

Lee, S. K., Kader, A. A. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol., vol. 20, no. 3, p. 207-220. DOI:

Luning, P. A., Ebbenhorst‐Seller, T., De Rijk, T., Roozen, J. P. 1995. Effect of hot‐air drying on flavour compounds of bell peppers (Capsicum annuum). J. Sci. Food Agri., vol. 68, no. 3, p. 355-365. DOI:

Malan, C. 2015. Review: humic and fulvic acids. A Practical Approach. In Sustainable soil management symposium. Stellenbosch, South Africa: Agrilibrium Publisher, 21 p.

Mancuso, S., Azzarello, E., Mugnai, S., Briand, X. 2006. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci., vol. 20, p. 156-161.

Marín, A., Ferreres, F., Tomás-Barberán, F. A., Gil, M. I. 2004. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem., vol. 52, no. 12, p. 3861-3869. DOI:

Oktay, M., Kufrevioğlu, I., Kocacaliskan, I., Sakiroğlu, H. 1995. Polyphenol oxidase from Amasya apple. J. Food Sci., vol. 60, no. 3, p. 495-499. DOI:

Oyaizu, M. 1986. Studies on products of brown¬ing reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nut., vol. 44, no. 6, p. 307. DOI:

Pichyangkura, R., Chadchawan, S. 2015. Biostimulant activity of chitosan in horticulture. Sci. Hortic., vol. 196, p. 49-65. DOI:

Riipi, M., Ossipov, V., Lempa, K., Haukioja, J., Ossipova, S., Pihlaja, K. 2002. Seasonal changes in birch leaf chem. are there tradeoffs between leaf growth and accumulation of phenolics. OECOLOGIA., vol. 130, no. 3, p. 380-390. DOI:

Rimmer, D. L. 2006. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil. Sci., vol. 57, p. 91-94. DOI:

Ruzzi, M., Aroca, R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic., vol. 196, p. 124-134. DOI:

Savvas, D., Ntatsi, G. 2015. Biostimulant activity of silicon in horticulture. Sci. Hortic., vol. 196, p. 66-81. DOI:

Senesi, N., Miano, T. M. 1995. The role of abiotic interactions with humic substances on the environmental impact of organic pollutants. In Huang, P. M., Berthelin, J., Bollag, J. M., McGill, W. B., Page, A. L. Environmental impact of soil component interactions. Natural and Anthropogenic Organics. Boca Raton, USA : CRC-Lewis, p. 311-335. ISBN 9780873719148.

Shahidi, F., Naczk, M. 1995. Methods of analysis and quantification of phenolic compounds. Food phenolic: sources, chemistry, effects and applications. Lanchaester, USA: Technomic Publishind Company, Inc, p. 287-293. ISBN 9781566762793.

Sharma, H. S., Fleming, C., Selby, C., Rao, J. R., Martin, T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol., vol. 26, no. 1, p. 465-490. DOI:

Silva, R. D. A., Santos, J. L., Oliveira, L. S., Soares, M. R. S., Santos, S. M. S. 2016. Biostimulants on mineral nutrition and fiber quality of cotton crop. Rev. Bras. Eng. Agríc. Ambient., vol. 20, no. 12, p. 1062-1066. DOI:

Škrovánková, S., Mlček, J., Orsavová, J., Juríková,T., Dřímalová, P. 2017. Polyphenols content and antioxidant activity of paprika and pepper. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 52-57. DOI:

Thomas, S. C. L. 1996. Nutrient weeds as soil amendments for organic cally growth herbs. J. Herbs Spices Med. Plants., vol. 4, p. 3-8. DOI:

Toor, R. K., Geoffrey, P. S., Anuschka, H. 2006. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal., vol. 19, no. 1, p. 20-27. DOI:

van Hees, P. A. W., Lundström, U. S., Giesler, R. 2000. Low molecular weight organic acids and their Al-complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma., vol. 94, no. 2-4, p. 173-200. DOI:

Vernieri, P., Borghesi, E., Tognoni, F., Ferrante, A., Serra, G., Piaggesi, A. 2006. Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Hortic., vol. 718, p. 477-484. DOI:

Vernon, L. P., Seely, G. R. 1966. The chlorophylls: physical, chemical and biological properties. 1st ed. New York, USA : Academic Press, 696 p. ISBN 9781483267722.

Williams, P. C. 2001. Implementation of near-infrared technology. Near-infrared Technology in the Agricultural and Food Industries, vol. 2, p. 143-167.

Winter, C. K., Davis, S. F. 2006. Organic foods. J Food Sci., vol. 71, no. 9, p. 117-124. DOI:

Zaghloul, S. M., El-Quesni, F. E. M., Mazhar, A. A. M. 2009. Influence of potassium humate on growth and chemical constituents of Thuja orientalis L. seedlings. Ozean J. Applied Sci., vol. 2, p.73-78.



How to Cite

Maraei, R., Eliwa, N., & Aly, A. . (2019). Use of some biostimulants to improve the growth and chemical constituents of sweet pepper. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 553–561.