The use of biofortification for production of selenium enriched garden pea
DOI:
https://doi.org/10.5219/1359Keywords:
biofortification, selenium, garden peaAbstract
Biofortification of crops with selenium is one of the possible manners on how to increase selenium intake by humans. The effect of selenium fertilization in relation to selenium enrichment of pea and following the phytotoxicity symptoms in garden pea plants was studied. Pot experiments were established with a control variant without selenium addition and four variants where selenium was applied as sodium selenate into the soil in four different concentrations (1 - 6 mg Se.kg-1) before seeding. Garden pea was grown in pots for 60 days and then plant material was dried and submitted to analysis. The total content of selenium was determined by the ZET-AAS method in the roots, above-ground parts of the plant (stems, leaves, extracted pods), and in seeds of a pea. Dean-Dixon´s test and paired t-test (α = 0.05) were used for statistical evaluation of the results. Transfer factors were calculated as a ratio between selenium content (mg.kg-1) in individual plant material and soil. Transfer indexes were calculated as a ratio between selenium content (mg.kg-1) in seeds and roots. The results showed that with the increasing addition of the Se to the soil, its contents in all parts of the plant proportionally increased. The content of the Se increased in the roots 43 to 173-fold, in the above-ground parts 79 to 372-fold, and in the seeds Se was accumulated 130 to 415 times more compared to control. Transfer factors and transport indexes were expressed. Transfer factors for pea varied from 11.05 to 19.25 in the case of Se transfer to the whole pea biomass. In the case of the Se transfer from soil to pea seeds, the highest transfer showed variant with addition 1 mg Se.kg-1 and the transfer factor gradually decreased with increasing addition of Se. Based on the amount of biomass produced, the experiments statistically confirmed the phytotoxicity of higher doses (4 and 6 mg Se.kg-1) of selenium to plants. The highest transport index values are shown variants with the Se addition 1 and 2 mg Se.kg-1 (2.03 and 1.77, respectively). In these variants, Se was used the most efficiently. Our results showed that the best biofortification results were obtained in experimental variants with the lower selenium additions (1 and 2 mg Se.kg-1).
Downloads
Metrics
References
Bitterli, C., Banuelos, G., Schulin, R. 2010. Use of transfer factors to characterize uptake of selenium by plants. Fuel and Energy Abstracts, vol. 107, no. 2, p. 206-216. https://doi.org/10.1016/j.gexplo.2010.09.009 DOI: https://doi.org/10.1016/j.gexplo.2010.09.009
Birringer, M., Pilawa, S., Flohé, L. 2002. Trends in selenium biochemistry. Nat. Prod. Rep., vol. 19, no. 6, p. 693-718. https://doi.org/10.1039/B205802M DOI: https://doi.org/10.1039/B205802M
Blanco, R. P., Vera, T. F., Pérez, F. M., Lozano, J. C. 2006. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L. Science of the Total Environment, vol. 361, no. 1-3, p. 1-7. https://doi.org/10.1016/j.scitotenv.2005.08.020 DOI: https://doi.org/10.1016/j.scitotenv.2005.08.020
El-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Alshaal, T. A., Shalaby, T. A., Sztrik, A., Prokisch, J., Fári, M. 2014. Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, vol. 12, no. 4, p. 495-510. https://doi.org/10.1007/s10311-014-0476-0 DOI: https://doi.org/10.1007/s10311-014-0476-0
Garousi, F., Kovács, B., Domokos-Szabolcsy, É., Veres, S. 2017. Biological changes of green pea (Pisum sativum L.) by selenium enrichment. Acta Biologica Hungarica, vol. 68, no. 1, p. 60-72. https://doi.org/10.1556/018.68.2017.1.6 DOI: https://doi.org/10.1556/018.68.2017.1.6
Germ, M., Kreft, I., Osvald, J. 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry, vol. 43, no. 5, p. 445-448. https://doi.org/10.1016/j.plaphy.2005.03.004 DOI: https://doi.org/10.1016/j.plaphy.2005.03.004
Hartikainen, H., Xue, T. 1999. The promotive effect of seleniumon plant growth as triggered by ultraviolet irradiatio. Journal of Environmental Quality , vol. 28, no. 4, p. 1372-1375. https://doi.org/10.2134/jeq1999.00472425002800040043x DOI: https://doi.org/10.2134/jeq1999.00472425002800040043x
Hegedűs, O., Hegedűsová, A., Šimková, S., Pavlík, V., Jomová, K. 2008. Evaluation of the ET-AAS and HG-AAS methods of selenium determination in vegetables. Journal of Biochemical and Biophysical Methods, vol. 70, no. 6, p. 1287-1291. https://doi.org/10.1016/j.jprot.2008.01.002 DOI: https://doi.org/10.1016/j.jprot.2008.01.002
Hegedűs, O., Hegedűsová, A., Šimková, S. 2007. Selenium as a biogenic compound (Selén ako biogénny prvok). Scientific monography. Nitra, Slovakia : Constantine the Philosopher University in Nitra. 76 p. ISBN 978-80-8094-168-0. (In Slovak)
Hegedűsová, A., Mezeyová, I., Hegedűs, O., Musilová, J., Paulen, O. 2015. Selenium content increasing in the seeds of garden pea after foliar biofortification. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, p. 435-441. https://doi.org/10.5219/559 DOI: https://doi.org/10.5219/559
Chrenková, M., Čerešňáková, Z., Sommer, A., Nitrayová, S. 2003. Legumes in human nutrition(Strukoviny vo výžive ľudí). In Nutrition and food for the third millennium, "Functional food"(Výživa a potraviny pre tretie tisícročie, „Funkčné potraviny“). Nitra, Slovakia : SPU, s. 144-146. ISBN 80-8069-174-6. (In Slovak)
Jain, K., Kataria, S., Guruprasad, K. N. 2004. Effect of UV-B radiation on antioxidant enzymes and its modulation by benzoquinone and a-tocopherol in cucumber cotyledons. Current science, vol. 87, no. 1. p. 87-90. Available at: https://www.jstor.org/stable/24107986.
Krinsky, N., Beecher, G. R., Burk, R. F., Chan, A. C., Erdman, J. W., Jacob, R. A., Jialal, I., Kolonel, L. N., Marshall, J. R., Taylor Mayne, P. R. L. 2000. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. In Institute of Medicine. WASHINGTON DC, USA : National Academies Press, 529 p. ISBN-13 978-0309069359.
Poblaciones, M., Rodrigo, S., Santamaria, O. 2015. Biofortification of Legumes with Selenium in Semiarid Conditions. In Preedy V. R . Selenium: Chemistry, Analysis, Function and Effects. WASHINGTON DC, USA : Royal society of chemistry, p. 324-340. ISBN 978-1-84973-891-0. DOI: https://doi.org/10.1039/9781782622215-00324
Poblaciones, M., Rodrigo, S., Santamaria, O. 2013. Evaluation of the Potential of Peas (Pisum sativum L.) to Be Used in Selenium Biofortification Programs Under Mediterranean Conditions. Biol. Trace Elem. Res., vol. 151, p. 132-137. https://doi.org/10.1007/s12011-012-9539-x DOI: https://doi.org/10.1007/s12011-012-9539-x
Puccinelli, M., Malorgio, F., Pezzarossa, B. 2017. Selenium Enrichment of Horticultural Crops. Molecules, vol. 22, no. 6, p. 933. https://doi.org/10.3390/molecules22060933 DOI: https://doi.org/10.3390/molecules22060933
Ros, G. H., van Rotterdam, A. M. D., Bussink, D. W., Bindraban, P. S. 2016. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, vol. 404, no. 1-2, p. 99-112. https://doi.org/10.1007/s11104-016-2830-4 DOI: https://doi.org/10.1007/s11104-016-2830-4
Sager, M. 2006. Selenium in agriculture, food, and nutrition. Pure Appl. Chem. vol. 78, no. 1, p. 111-133. https://doi.org/10.1351/pac200678010111 DOI: https://doi.org/10.1351/pac200678010111
Smrkolj, P., Stibilj, V., Kreft, I., Kapolna, E. 2005. Selenium species determination in selenium-enriched pumpkin (Cucurbita pepo L.) seeds by HPLC-UV-HG-AFS. Analytical sciences, The Japan Society for Analytical Chemistry, vol. 21, no. 12., p. 1501-1504. https://doi.org/10.2116/analsci.21.1501 DOI: https://doi.org/10.2116/analsci.21.1501
Smrkolj, P., Germ, M., Kreft, I., Stibilj, V. 2006. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se - enriched seeds. J. Exp. Bot., vol. 57, no. 14, p. 3595-3600. https://doi.org/10.1093/jxb/erl109 DOI: https://doi.org/10.1093/jxb/erl109
Tapiero, H., Townsend, D. M., Tew, K. D. 2003. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. vol. 57, no. 3-4, p. 134-144. https://doi.org/10.1016/S0753-3322(03)00035-0 DOI: https://doi.org/10.1016/S0753-3322(03)00035-0
Thavarajah, D., Ruszkowski, J., Vandenberg, A. 2008. High potential for selenium biofortification of lentils (Lens culinaris L.). J. Agric. Food. Chem. vol. 56, no. 22, p. 10747-10753. https://doi.org/10.1021/jf802307h DOI: https://doi.org/10.1021/jf802307h
Thavarajah, D., Warkentin, T., Vandenberg, A. 2010. Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.). Can. J. Plant. Sci. vol. 90, no. 4, p. 383-389. https://doi.org/10.4141/CJPS09154 DOI: https://doi.org/10.4141/CJPS09154
Uchida, S., Tagami, K., Hirai, I. 2007. Soil-to-Plant Transfer Factors of Stable Elements and Naturally Occurring Radionuclides: (2) Rice Collected in Japan, Journal of Nuclear Science and Technology, vol. 44, no. 5, p. 779-790. https://doi.org/10.1080/18811248.2007.9711867 DOI: https://doi.org/10.1080/18811248.2007.9711867
Vargová, A., Hegedűsová, A., Jakabová, S. 2009. Influence of selenium compounds on germination in Pisum sativum L. (Vplyv rôznych foriem a koncentrácií selénu na klíčivosť hrachu záhradného): In Mladí vedci 2009 : proceeding of the conference. Nitra, Slovakia : UKF, s. 362-367. ISBN 978-80-8094-499-5. (In Slovak)
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.