Verification of the humic substances and PGPB biostimulants beneficial effects on the potato yield and bioactive substances content
DOI:
https://doi.org/10.5219/1805Keywords:
potatoes, yield, biostimulants, humic substances, beneficial bacteriaAbstract
Potatoes are one of the most important sources of nutrients worldwide, but excessive doses of industrial fertilizers are usually used to achieve higher yields. Soil biostimulants are an increasingly used alternative for reducing fertilizer doses and growing healthy agricultural products. In this study, we examined the effects of humic substances (Agriful) and beneficial bacteria (Groundfix) based biostimulants applied by dripping irrigation on the yield and quality of potato tubers in comparison with the conventional N fertilization system. The small trail field experiment was founded in the growing season of 2020 in the Botanical Garden of the Slovak University of Agriculture in Nitra. The highest tubers yield had the combination of biostimulants and N fertilizer – 195.16% above to control. Simultaneously this combination reached an increase in refractometric dry matter content, starch content – 3.6%, and vitamin C content – 20% increase above to control. The Groundfix variant had the highest antioxidant activity with a 16.2% difference compared to the conventional nitrogen fertilization variant. These results show the positive effect of applied biostimulants on the yield and quality of cultivated potatoes.
Downloads
Metrics
References
Čepl, J., Červínová, E., Čížek, M., Domkářová, J., Exnarová, J., Greplová, M., Hauswater, E., Krpálková, A., Vokál, B., & Váškodová, J. (2012). Máme radi brambory (We like potatoes). Ministerstvo zemědelství ČR (Ministry of Agriculture of Czech Republic), p. 111. (In Czech)
Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and Human Health. In Critical Reviews in Food Science and Nutrition (Vol. 49, Issue 10, pp. 823–840). Informa UK Limited. https://doi.org/10.1080/10408390903041996 DOI: https://doi.org/10.1080/10408390903041996
Burgos, G., Zum Felde, T., Andre, C., & Kubow, S. (2020). The Potato and Its Contribution to the Human Diet and Health. In The Potato Crop (pp. 37–74). Springer International Publishing. https://doi.org/10.1007/978-3-030-28683-5_2 DOI: https://doi.org/10.1007/978-3-030-28683-5_2
Lovat, C., Nassar, A. M. K., Kubow, S., Li, X.-Q., & Donnelly, D. J. (2015). Metabolic Biosynthesis of Potato (Solanum tuberosuml.) Antioxidants and Implications for Human Health. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 14, pp. 2278–2303). Informa UK Limited. https://doi.org/10.1080/10408398.2013.830208 DOI: https://doi.org/10.1080/10408398.2013.830208
Zaheer, K., & Akhtar, M. H. (2014). Potato Production, Usage, and Nutrition—A Review. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 5, pp. 711–721). Informa UK Limited. https://doi.org/10.1080/10408398.2012.724479 DOI: https://doi.org/10.1080/10408398.2012.724479
Černý, I., Molnárová, J., Pačuta, V., & Pospíšil, R. (2011). Rastlinná výroba (Plant production). KRV, SUA Nitra. p. 159. (In Slovak)
Najm, A. A., Hadi, M. R. H. S., Fazeli, F., Darzi, M. T., & Rahi, A. (2012). Effect of Integrated Management of Nitrogen Fertilizer and Cattle Manure on the Leaf Chlorophyll, Yield, and Tuber Glycoalkaloids of Agria Potato. In Communications in Soil Science and Plant Analysis (Vol. 43, Issue 6, pp. 912–923). Informa UK Limited. https://doi.org/10.1080/00103624.2012.653027 DOI: https://doi.org/10.1080/00103624.2012.653027
Pospíšil, R., Karabínová, M., Dančák, I., Candráková, E., Poláček, M., & Horvát, F. (2007) Integrovaná rastlinná výroba (Integrated plant production). SUA in Nitra. p. 170.
Larkin, R. P., Honeycutt, C. W., Griffin, T. S., Olanya, O. M., & He, Z. (2021). Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S. In Agronomy (Vol. 11, Issue 1, p. 165). MDPI AG. https://doi.org/10.3390/agronomy11010165 DOI: https://doi.org/10.3390/agronomy11010165
Seyedbagheri, M.-M. (2010). Influence of Humic Products on Soil Health and Potato Production. In Potato Research (Vol. 53, Issue 4, pp. 341–349). Springer Science and Business Media LLC. https://doi.org/10.1007/s11540-010-9177-7 DOI: https://doi.org/10.1007/s11540-010-9177-7
Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R. Z., Baba, Z. A., Sheikh, T. A., Reddy, M. S., El Enshasy, H., Gafur, A., & Suriani, N. L. (2021). Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. In Sustainability (Vol. 13, Issue 5, p. 2856). MDPI AG. https://doi.org/10.3390/su13052856 DOI: https://doi.org/10.3390/su13052856
Canellas, L. P., Balmori, D. M., Médici, L. O., Aguiar, N. O., Campostrini, E., Rosa, R. C. C., Façanha, A. R., & Olivares, F. L. (2012). A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). In Plant and Soil (Vol. 366, Issues 1–2, pp. 119–132). Springer Science and Business Media LLC. https://doi.org/10.1007/s11104-012-1382-5 DOI: https://doi.org/10.1007/s11104-012-1382-5
Hopkins, B. G., Horneck, D. A., & MacGuidwin, A. E. (2014). Improving Phosphorus Use Efficiency Through Potato Rhizosphere Modification and Extension. In American Journal of Potato Research (Vol. 91, Issue 2, pp. 161–174). Springer Science and Business Media LLC. https://doi.org/10.1007/s12230-014-9370-3 DOI: https://doi.org/10.1007/s12230-014-9370-3
Ding, Z., Ali, E. F., Almaroai, Y. A., Eissa, M. A., & Abeed, A. H. A. (2021). Effect of Potassium Solubilizing Bacteria and Humic Acid on Faba Bean (Vicia faba L.) Plants Grown on Sandy Loam Soils. In Journal of Soil Science and Plant Nutrition (Vol. 21, Issue 1, pp. 791–800). Springer Science and Business Media LLC. https://doi.org/10.1007/s42729-020-00401-z DOI: https://doi.org/10.1007/s42729-020-00401-z
Olivares, F. L., Aguiar, N. O., Rosa, R. C. C., & Canellas, L. P. (2015). Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. In Scientia Horticulturae (Vol. 183, pp. 100–108). Elsevier BV. https://doi.org/10.1016/j.scienta.2014.11.012 DOI: https://doi.org/10.1016/j.scienta.2014.11.012
Koyro, H.-W., Ahmad, P., & Geissler, N. (2011). Abiotic Stress Responses in Plants: An Overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change (pp. 1–28). Springer New York. Https://doi.org/10.1007/978-1-4614-0815-4_1 DOI: https://doi.org/10.1007/978-1-4614-0815-4_1
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. In Agronomy (Vol. 9, Issue 6, p. 306). MDPI AG. https://doi.org/10.3390/agronomy9060306
Macedo, A. F. (2011). Abiotic Stress Responses in Plants: Metabolism to Productivity. In Abiotic Stress Responses in Plants (pp. 41–61). Springer New York. https://doi.org/10.1007/978-1-4614-0634-1_3 DOI: https://doi.org/10.1007/978-1-4614-0634-1_3
Caradonia, F., Ronga, D., Tava, A., & Francia, E. (2021). Plant Biostimulants in Sustainable Potato Production: an Overview. In Potato Research (Vol. 65, Issue 1, pp. 83–104). Springer Science and Business Media LLC. https://doi.org/10.1007/s11540-021-09510-3 DOI: https://doi.org/10.1007/s11540-021-09510-3
Evers, D., Bonnechère, S., Hoffmann, L., & Hausman, J.-F. (2007). Physiological aspects of abiotic stress response in potato. In Belgian Journal of Botany (Vol. 140, Issue 2, pp. 141–150). Royal Botanical Society of Belgium. Retrieved from: http://www.jstor.org/stable/20794635.
Handayani, T., Gilani, S. A., & Watanabe, K. N. (2019). Climatic changes and potatoes: How can we cope with the abiotic stresses? In Breeding Science (Vol. 69, Issue 4, pp. 545–563). Japanese Society of Breeding. https://doi.org/10.1270/jsbbs.19070 DOI: https://doi.org/10.1270/jsbbs.19070
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. In Agronomy (Vol. 9, Issue 6, p. 306). MDPI AG. https://doi.org/10.3390/agronomy9060306 DOI: https://doi.org/10.3390/agronomy9060306
Andreotti, C. (2020). Management of Abiotic Stress in Horticultural Crops: Spotlight on Biostimulants. In Agronomy (Vol. 10, Issue 10, p. 1514). MDPI AG. https://doi.org/10.3390/agronomy10101514 DOI: https://doi.org/10.3390/agronomy10101514
Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2013). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). In Plant and Soil (Vol. 378, Issues 1–2, pp. 1–33). Springer Science and Business Media LLC. https://doi.org/10.1007/s11104-013-1956-x DOI: https://doi.org/10.1007/s11104-013-1956-x
Ekin, Z. (2019). Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. In Sustainability (Vol. 11, Issue 12, p. 3417). MDPI AG. https://doi.org/10.3390/su11123417 DOI: https://doi.org/10.3390/su11123417
Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. In Chemical and Biological Technologies in Agriculture (Vol. 8, Issue 1). Springer Science and Business Media LLC. Https://doi.org/10.1186/s40538-021-00230-x DOI: https://doi.org/10.1186/s40538-021-00230-x
Massányi, P., Massányi, M., Madeddu, R., Stawarz, R., & Lukáč, N. (2020). Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. In Toxics (Vol. 8, Issue 4, p. 94). MDPI AG. https://doi.org/10.3390/toxics8040094 DOI: https://doi.org/10.3390/toxics8040094
Chaparro, J. M., Sheflin, A. M., Manter, D. K., & Vivanco, J. M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. In Biology and Fertility of Soils (Vol. 48, Issue 5, pp. 489–499). Springer Science and Business Media LLC. https://doi.org/10.1007/s00374-012-0691-4 DOI: https://doi.org/10.1007/s00374-012-0691-4
Berg, S., Dennis, P. G., Paungfoo-Lonhienne, C., Anderson, J., Robinson, N., Brackin, R., Royle, A., DiBella, L., & Schmidt, S. (2019). Effects of commercial microbial biostimulants on soil and root microbial communities and sugarcane yield. In Biology and Fertility of Soils (Vol. 56, Issue 4, pp. 565–580). Springer Science and Business Media LLC. https://doi.org/10.1007/s00374-019-01412-4 DOI: https://doi.org/10.1007/s00374-019-01412-4
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. In Scientifica (Vol. 2012, pp. 1–15). Hindawi Limited. https://doi.org/10.6064/2012/963401 DOI: https://doi.org/10.6064/2012/963401
Akimbekov, N., Qiao, X., Digel, I., Abdieva, G., Ualieva, P., & Zhubanova, A. (2020). The Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield. In Agriculture (Vol. 10, Issue 5, p. 147). MDPI AG. https://doi.org/10.3390/agriculture10050147 DOI: https://doi.org/10.3390/agriculture10050147
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. In Scientia Horticulturae (Vol. 196, pp. 15–27). Elsevier BV. https://doi.org/10.1016/j.scienta.2015.09.013
Seyedbagheri, M. M., He, Z., & Olk, D. C. (2012). Yields of Potato and Alternative Crops Impacted by Humic Product Application. In Sustainable Potato Production: Global Case Studies (pp. 131–140). Springer Netherlands. https://doi.org/10.1007/978-94-007-4104-1_8
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. In Scientia Horticulturae (Vol. 196, pp. 15–27). Elsevier BV. https://doi.org/10.1016/j.scienta.2015.09.013 DOI: https://doi.org/10.1016/j.scienta.2015.09.013
Chen, Y., Clapp, C. E., & Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. In Soil Science and Plant Nutrition (Vol. 50, Issue 7, pp. 1089–1095). Informa UK Limited. https://doi.org/10.1080/00380768.2004.10408579 DOI: https://doi.org/10.1080/00380768.2004.10408579
Seyedbagheri, Mir.-M., & Torell J. M. (2001). Effects of humic acids and nitrogen mineralization on crop production in field trials. In Journal Special Publication - Royal Society of Chemistry (Vol. 273, pp. 355–360). Royal Society of Chemistry. DOI: https://doi.org/10.1039/9781847551085-00355
Suh, H. Y., Yoo, K. S., & Suh, S. G. (2014). Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. In Horticulture, Environment, and Biotechnology (Vol. 55, Issue 3, pp. 183–189). Springer Science and Business Media LLC. https://doi.org/10.1007/s13580-014-0005-x DOI: https://doi.org/10.1007/s13580-014-0005-x
Orsi, M. (2014). Molecular dynamics simulation of humic substances. In Chemical and Biological Technologies in Agriculture (Vol. 1, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40538-014-0010-4 DOI: https://doi.org/10.1186/s40538-014-0010-4
Kulikova, N. A., Stepanova, E. V., & Koroleva, O. V. (2005). Mitigating Activity of Humic Substances: Direct Influence on Biota. In NATO Science Series (pp. 285–309). Springer-Verlag. https://doi.org/10.1007/1-4020-3252-8_14 DOI: https://doi.org/10.1007/1-4020-3252-8_14
Schoebitz, M., López, M. D., Serrí, H., Martínez, O., & Zagal, E. (2016). Combined application of microbial consortium and humic substances to improve the growth performance of blueberry seedlings. In Journal of soil science and plant nutrition (Issue ahead, pp. 0–0). Springer Science and Business Media LLC. https://doi.org/10.4067/s0718-95162016005000074 DOI: https://doi.org/10.4067/S0718-95162016005000074
Fecenko, J., & Ložek, O. (2000). Výživa a hnojenie poľných plodín. SUA in Nitra. p. 442.
ISO. (2009). Native Starch. Determination of Starch Content—Ewers Polarimetric Method. Method 10520 ISO: Geneva, Switzerland. Retrieved from: https://agris.fao.org/agris-search/search.do?recordID=XF9769000
Hegedus, O. (2019). Antioxidant activity determination of horticultural crops. In SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology. https://doi.org/10.5593/sgem2019/6.1/s25.070 DOI: https://doi.org/10.5593/sgem2019/6.1/S25.070
Lachman, J., Proněk, D., Hejtmánková, A., Dudjak, J., Pivec, V., & Faitová, K. (2011). Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. In Horticultural Science (Vol. 30, Issue No. 4, pp. 142–147). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/3876-hortsci DOI: https://doi.org/10.17221/3876-HORTSCI
Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A Meta-Analysis and Review of Plant-Growth Response to Humic Substances. In Advances in Agronomy (pp. 37–89). Elsevier. https://doi.org/10.1016/b978-0-12-800138-7.00002-4 DOI: https://doi.org/10.1016/B978-0-12-800138-7.00002-4
Hassen, A., & Al-Zubaidi, A. (2018). Effect Of Humic Acids On Growth, Yield And Quality Ofthree Potato Varieties. In Plant Archives (Vol. 18,Issue 2, pp. 1533–1540). Dr. R.S. Yadab. Retrieved from: http://plantarchives.org/18-02/1533-1540%20(4234).pdf
Abdel-Salam M.A. and Shams, A.S. Feldspar-K. (2012). Feldspar-K Fertilization of Potato (Solanum tuberosum L.) Augmented by Biofertilizer. In American-Eurasian J. Agric. & Environ. Sci. (Vol. 12, Issue 6. pp. 694–699). IDOSI Publications.
Saif El-Deen, U., Ezzat, A., & El-Morsy, A. (2011). Effect of phosphorus fertilizer rates and application methods of humic acid on productivity and quality of sweet potato. In Journal of Plant Production (Vol. 2, Issue 1, pp. 53–66). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/jpp.2011.85460 DOI: https://doi.org/10.21608/jpp.2011.85460
Sánchez, A. S., Juárez, M., Sánchez-Andreu, J., Jordá, J., & Bermúdez, D. (2005). Use of Humic Substances and Amino Acids to Enhance Iron Availability for Tomato Plants from Applications of the Chelate FeEDDHA. In Journal of Plant Nutrition (Vol. 28, Issue 11, pp. 1877–1886). Informa UK Limited. https://doi.org/10.1080/01904160500306359 DOI: https://doi.org/10.1080/01904160500306359
Thi Lua, H., & Böhme, M. (2001). Influence of humic acid on the growth of tomato in hydroponic systems. In Acta Horticulturae (Issue 548, pp. 451–458). International Society for Horticultural Science (ISHS). https://doi.org/10.17660/actahortic.2001.548.53 DOI: https://doi.org/10.17660/ActaHortic.2001.548.53
Helaly, A. A. (2021). Enhancing the Productivity and Quality of Tomato using Magnetized Water and Humic Acid as Bio-stimulant Agents. In Indian Journal Of Agricultural Research (Issue Of). Agricultural Research Communication Center. https://doi.org/10.18805/ijare.a-616 DOI: https://doi.org/10.18805/IJARe.A-616
Lima, A. A. de, Alvarenga, M. A. R., Rodrigues, L., & Chitarra, A. B. (2011). Yield and quality of tomato produced on substrates and with application of humic acids. In Horticultura Brasileira (Vol. 29, Issue 3, pp. 269–274). FapUNIFESP (SciELO). https://doi.org/10.1590/s0102-05362011000300002 DOI: https://doi.org/10.1590/S0102-05362011000300002
Abdellatif, I. M. Y., Abdel-Ati, Y. Y., Abdel-Mageed, Y. T., & Hassan, M. A.-M. M. (2017). Effect of Humic Acid on Growth and Productivity of Tomato Plants Under Heat Stress. In Journal of Horticultural Research (Vol. 25, Issue 2, pp. 59–66). Walter de Gruyter GmbH. https://doi.org/10.1515/johr-2017-0022 DOI: https://doi.org/10.1515/johr-2017-0022
Ruiz, J. L., & Salas Sanjuan, M. D. C. (2022). The use of plant growth promoting bacteria for biofertigation; effects on concentrations of nutrients in inoculated aqueous vermicompost extract and on the yield and quality of tomatoes. In Biological Agriculture & Horticulture (Vol. 38, Issue 3, pp. 145–161). Informa UK Limited. https://doi.org/10.1080/01448765.2021.2010596 DOI: https://doi.org/10.1080/01448765.2021.2010596
Aminifard, M.H.; Aroiee, H.; Nemati, H.; Azizi, M.; Jaafar, H.Z.E. (2012). Fulvic acid affects pepper antioxidant activity and fruit quality. In AFRICAN JOURNAL OF BIOTECHNOLOGY (Vol. 11, Issue 68). Academic Journals. https://doi.org/10.5897/ajb12.1507 DOI: https://doi.org/10.5897/AJB12.1507
Aminifard, M. H., Aroiee, H., Azizi, M., Nemati, H., & Jaafar, H. Z. E. (2012). Effect of Humic Acid on Antioxidant Activities and Fruit Quality of Hot Pepper (Capsicum annuumL.). In Journal of Herbs, Spices & Medicinal Plants (Vol. 18, Issue 4, pp. 360–369). Informa UK Limited. https://doi.org/10.1080/10496475.2012.713905 DOI: https://doi.org/10.1080/10496475.2012.713905
Maraei, R., Eliwa, N., & Aly, A. (2019). Use of some biostimulants to improve the growth and chemical constituents of sweet pepper. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 13, Issue 1, pp. 553–561). HACCP Consulting. https://doi.org/10.5219/1131 DOI: https://doi.org/10.5219/1131
Ibrahim, A., Abdel-Razzak, H., Wahb-Allah, M., Alenazi, M., Alsadon, A., & Dewir, Y. H. (2019). Improvement in Growth, Yield, and Fruit Quality of Three Red Sweet Pepper Cultivars by Foliar Application of Humic and Salicylic Acids. In HortTechnology (Vol. 29, Issue 2, pp. 170–178). American Society for Horticultural Science. https://doi.org/10.21273/horttech04263-18 DOI: https://doi.org/10.21273/HORTTECH04263-18
Jan, J. A., Nabi, G., Khan, M., Ahmad, S., Shah, P. S., Hussain, S., & Sehrish, S. (2020). Foliar Application of Humic Acid Improves Growth and Yield of Chilli (Capsicum annum L.) Varieties. In Pakistan Journal of Agricultural Research (Vol. 33, Issue 3). ResearchersLinks Ltd. https://doi.org/10.17582/journal.pjar/2020/33.3.461.472 DOI: https://doi.org/10.17582/journal.pjar/2020/33.3.461.472
Karakurt, Y., Unlu, H., Unlu, H., & Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. In Acta Agriculturae Scandinavica, Section B - Plant Soil Science (Vol. 59, Issue 3, pp. 233–237). Informa UK Limited. https://doi.org/10.1080/09064710802022952 DOI: https://doi.org/10.1080/09064710802022952
Sellitto, V. M., Golubkina, N. A., Pietrantonio, L., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Florin, I., & Caruso, G. (2019). Tomato Yield, Quality, Mineral Composition and Antioxidants as Affected by Beneficial Microorganisms Under Soil Salinity Induced by Balanced Nutrient Solutions. In Agriculture (Vol. 9, Issue 5, p. 110). MDPI AG. https://doi.org/10.3390/agriculture9050110 DOI: https://doi.org/10.3390/agriculture9050110
Mandyal, P., Kaushal R., Sharma, K., & Kaushal, M. (2014). Evaluation of native PGPR isolates in bell pepper for enhanced growth, yield and fruit quality. In International Journal of Farm Sciences (Vol. 2, Issue 2, pp. 28–35). Society for Advancement of Human and Nature.
Del Amor, F. M., & Porras, I. (2009). Effects of plant-growth-promoting bacteria on growth and yield of pepper under limited nitrogen supply. In Canadian Journal of Plant Science (Vol. 89, Issue 2, pp. 349–358). Canadian Science Publishing. https://doi.org/10.4141/cjps08116 DOI: https://doi.org/10.4141/CJPS08116
Russo, V. M., & Perkins-Veazie, P. (2010). Yield and Nutrient Content of Bell Pepper Pods from Plants Developed from Seedlings Inoculated, or Not, with Microorganisms. In HortScience (Vol. 45, Issue 3, pp. 352–358). American Society for Horticultural Science. https://doi.org/10.21273/hortsci.45.3.352 DOI: https://doi.org/10.21273/HORTSCI.45.3.352
Elnemr, El-Bassiony, A.M., Tantawy, A.S., & Fawzy, Z.F. (2015). Responses of Eggplant ( Solanum melongena var . esculenta L ) Plants to Different Foliar Concentrations of Some Bio-Stimulators.Middle East Journal of Agriculture. (vol. 4, issue 4, pp. 860-866).
Morales-Payán, J. P., & Morales-Payán, J. P. (1994). Effect of kinetine, folcisteine and humic acid on the yield of “Jira” eggplant (Solanum melongena L.). Unknown. https://doi.org/10.22004/AG.ECON.258783
Paramasivan, M., Arunkumar, V., & Prabhu, T. (2015). Effect of humic acid and inorganic fertilizers on productivity, profitability, nutrient uptake and soil fertility in brinjal (Solanum melongena L.) var. KKM1 in Alfisol of Tamil Nadu. In AN ASIAN JOURNAL OF SOIL SCIENCE (Vol. 10, Issue 2, pp. 185–190). Hind Agri Horticultural Society. https://doi.org/10.15740/has/ajss/10.2/185-190 DOI: https://doi.org/10.15740/HAS/AJSS/10.2/185-190
Hilado, S. A. (2015). "Growth and yield response of eggplant (Solanum meongena L.) To varying combinations of inorganic fertilizers and plant growth promoting bacteria" [Undergraduate Theses]. College of Agriculture and Food Science (CAFS). Retrieved from: https://www.ukdr.uplb.edu.ph/etd-undergrad/1603
Samy, M., Mohamed, N., & Abd El-Aziz, M. (2015). Effect of boron, copper and humic acid treatments on vegetative growth, yield and storability of jerusalem artichoke tubers. In Journal of Productivity and Development (Vol. 20, Issue 3, pp. 325–342). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/jpd.2015.42813 DOI: https://doi.org/10.21608/jpd.2015.42813
Namwongsa, J., Jogloy, S., Vorasoot, N., Boonlue, S., Riddech, N., & Mongkolthanaruk, W. (2019). Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditi. In Journal of Microbiology and Biotechnology (Vol. 29, Issue 11, pp. 1777–1789). Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1903.03062 DOI: https://doi.org/10.4014/jmb.1903.03062
Pırlak, L., & Köse, M. (2009). Effects of Plant Growth Promoting Rhizobacteria on Yield and Some Fruit Properties of Strawberry. In Journal of Plant Nutrition (Vol. 32, Issue 7, pp. 1173–1184). Informa UK Limited. https://doi.org/10.1080/01904160902943197 DOI: https://doi.org/10.1080/01904160902943197
Dinçsoy, M., & Sönmez, F. (2019). The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. In Journal of Plant Nutrition (Vol. 42, Issue 20, pp. 2757–2772). Informa UK Limited. https://doi.org/10.1080/01904167.2019.1658777 DOI: https://doi.org/10.1080/01904167.2019.1658777
Moustafa, Y.M. (2019). Onion Quality and Storage Ability Affected by Potassium Humate and NPK Doses. Ecronicon AGRICULTURE Research Article. (vol. 5, issue 5, pp. 227-235)
Combes-Meynet, E., Pothier, J. F., Moënne-Loccoz, Y., & Prigent-Combaret, C. (2011). The Pseudomonas Secondary Metabolite 2,4-Diacetylphloroglucinol Is a Signal Inducing Rhizoplane Expression of Azospirillum Genes Involved in Plant-Growth Promotion. In Molecular Plant-Microbe Interactions® (Vol. 24, Issue 2, pp. 271–284). Scientific Societies. https://doi.org/10.1094/mpmi-07-10-0148 DOI: https://doi.org/10.1094/MPMI-07-10-0148
Seyedbagheri, M. M., He, Z., & Olk, D. C. (2012). Yields of Potato and Alternative Crops Impacted by Humic Product Application. In Sustainable Potato Production: Global Case Studies (pp. 131–140). Springer Netherlands. https://doi.org/10.1007/978-94-007-4104-1_8 DOI: https://doi.org/10.1007/978-94-007-4104-1_8
Dobrovolskaya, T. G., Leontyevskaya, E. A., Khusnetdinova, K. A., & Balabko, P. N. (2013). Effect of humic fertilizers on the quantity and structure of the bacterial complexes of potato field. In Moscow University Soil Science Bulletin (Vol. 68, Issue 3, pp. 142–145). Allerton Press. https://doi.org/10.3103/s0147687413030034 DOI: https://doi.org/10.3103/S0147687413030034
Hopkins, B.; Stark, J. (2003). Humic Acid Effects On Potato Response To Phosphorus. Chemistry (pp. 87 -91). Presented at the Idaho potato conference.
Selladurai, R., & Purakayastha, T. J. (2015). Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. In Journal of Plant Nutrition (Vol. 39, Issue 7, pp. 949–956). Informa UK Limited. https://doi.org/10.1080/01904167.2015.1109106 DOI: https://doi.org/10.1080/01904167.2015.1109106
Ali, A. M., Awad, M. Y. M., Hegab, S. A., Gawad, A. M. A. E., & Eissa, M. A. (2020). Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. In Journal of Plant Nutrition (Vol. 44, Issue 3, pp. 411–420). Informa UK Limited. https://doi.org/10.1080/01904167.2020.1822399 DOI: https://doi.org/10.1080/01904167.2020.1822399
Melicháčová, S., Timoracká, M., Bystrická, J., Vollmannová, A., & Čéry, J. (2010). Relation of total antiradical activity and total polyphenol content of sweet cherries (Prunus avium L.) and tart cherries (Prunus cerasus L.). In Acta agriculturae Slovenica (Vol. 95, Issue 1). University of Ljubljana. https://doi.org/10.2478/v10014-010-0003-3 DOI: https://doi.org/10.2478/v10014-010-0003-3
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.