Protein quality chicken meat after feeding with active substances of citrus fruits and diclazuril and salinomycin sodium

Authors

  • Mária Angelovičová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Ondřej Bučko Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Animal Husbandry, Tr. A. Hlinku 2, 949 76 Nitra
  • Marek Angelovič Slovak University of Agriculture, Faculty of Enginnering, Department of Machines and Production Systems, Tr. A. Hlinku 2, 949 76 Nitra
  • Peter Zajác Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Jozef Čapla Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Marek Šnirc Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Jana Tkáčová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Evaluation and Processing of Animal Products, Tr. A. Hlinku 2, 949 76 Nitra
  • Michaela Klimentová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/915

Keywords:

chicken breast, chicken thigh, protein, lysine, methionine, additive substance

Abstract

The purpose of this study was an experimental investigation of the influence of active substances obtained mainly from citrus fruits in the experimental feed mixtures, and diclazuril and salinomycin sodium in the control feed mixtures of broiler chickens on productive efficiency and protein quality of the breast and thigh muscles. In vivo experiment was carried out with hybrid chickens Cobb 500. Basic feed mixtures were equal a soy cereal type for experimental and control group. Indicators of productive efficiency were measured and calculated, and protein, lysine and methionine contents in the breast and thigh muscles were measured by the method of FT IR, Nicolet 6700. Active substances obtained mainly from citrus fruits confirmed a statistically significant (p ˂0.05) positive effect on the body weight gain; tended to slightly increase feed intake per bird, protein, energy, lysine and methionine intake per bird; slightly decrease feed intake per 1 kg of body weight gain, protein, energy, lysine and methionine intake per 1 kg of body weight gain; slightly increase protein efficiency ratio and energy efficiency ratio. Additive substances used in the feed mixtures did not have a statistically significant effect on protein, lysine and methionine contents in the breast and thigh muscles but displayed a strong positive, statistically significant relation between lysine and methionine in them.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adbalqdadir, M. O., Arabi, S. A. 2014. The effects of different lysine and methionine levels on broiler chickens performance. International Journal of Innovative Research, vol. 2, no. 4, p. 46-52.

Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., Boskou, D. 2006. Radical scavenging activity of various extracts and fractions of sweet orange flavedo (Citrus sinensis). Food Chemistry, vol. 94, no. 1, p. 19-25. https://doi.org/10.1016/j.foodchem.2004.09.047 DOI: https://doi.org/10.1016/j.foodchem.2004.09.047

Angelovičová, M., Kunová, S., Čapla, J., Zajac, P., Bučko, O., Angelovič, M. 2016. Comparison of fatty acid profile in the chicken meat after feeding with narasin, nicarbazin and salinomycin sodium and phyto-additive substances. Journal of Environmental Science and Health, Part B, vol. 51, no. 6, p. 374-382. https://doi.org/10.1080/03601234.2016.1142320 PMid:26950416 DOI: https://doi.org/10.1080/03601234.2016.1142320

Arthington, J. D., Kunkle, W. E., Martin, A. M. 2002. Citrus pulp for cattle. Veterinary Clinics of North America: Food Animal, vol. 1, no. 2, p. 317-326. https://doi.org/10.1016/S0749-0720(02)00023-3 DOI: https://doi.org/10.1016/S0749-0720(02)00023-3

Azza, M. K., Naela, M. R. 2014. Effect of Dietary Supplementation of Organic Acids on Performance and Serum Biochemistry of Broiler Chicken. Science of Nature, vol. 12, no. 2, p. 38-45.

Baker, D. H. 2009. Advances in protein - amino acid nutrition of poultry. Amino Acids, vol. 37, no. 1, p. 29-41. https://doi.org/10.1007/s00726-008-0198-3 PMid:19009229 DOI: https://doi.org/10.1007/s00726-008-0198-3

Bigot, K., Mignon-Grasteau, S., Picard, M., Tesseraud, S. 2003. Effects of delayed feed intake on body, intestine, and muscle development in neonate broilers. Poultry Science, vol. 82, no. 5, p. 781-788. https://doi.org/10.1093/ps/82.5.781 PMid:12762401 DOI: https://doi.org/10.1093/ps/82.5.781

Bokkers, E. A. M., Koene, P. 2003. Eating behavior, and preprandial and postprandial correlations in male broiler and layer chickens. British Journal of Applied Poultry Research, vol. 44, no. 4, p. 538-544. https://doi.org/10.1080/00071660310001616165 PMid:14584843 DOI: https://doi.org/10.1080/00071660310001616165

Borum, P. R. 1983. Carnitine. Annual Review of Nutrition, vol. 3, no. 1, p. 233-259. https://doi.org/10.1146/annurev.nu.03.070183.001313 PMid:6357236 DOI: https://doi.org/10.1146/annurev.nu.03.070183.001313

Bouyeh, M., Gevorgyan, O. K. 2016. Effects of dietary lysine and methionine in broilers. Iranian Journal of Applied Animal Research, vol. 6, no. 4, p. 917-923.

Bunchasak, Ch. 2009. Role of dietary methionine in poultry production. Journal of Poultry Science, vol. 46, no. 3, p. 169-179. https://doi.org/10.2141/jpsa.46.169 DOI: https://doi.org/10.2141/jpsa.46.169

Café, M. B., Waldroup, P. W. 2006. Interactions between levels of methionine and lysine in broiler diets changed at typical industry intervals. International Journal of Poultry Science, vol. 5, no. 11, p. 1008-1015. https://doi.org/10.3923/ijps.2006.1008.1015 DOI: https://doi.org/10.3923/ijps.2006.1008.1015

Chavez, C., Coufal, C. D., Lacey, R. E., Carey, J. B. 2004. The impact of methionine source on poultry fecal matter odor volatiles. Poultry Science, vol. 83, no. 10, p. 359-364. https://doi.org/10.1093/ps/83.3.359 PMid:15049487 DOI: https://doi.org/10.1093/ps/83.3.359

Chuaynukool, K., Wattanachant, S., Siripongvutikorn, S. 2007. Chemical and properties of raw and cooked spent hen, broiler and Thai indigenous chicken muscles in mixed herbs acidified soup (Tom Yum). Journal of Food Science and Technology, vol. 5, no. 2, p. 180-186.

Council Directive 2007/43/EC. Council Directive 2007/43/EC laying down minimum rules for the protection of chickens kept for meat production. OJ L 182, 12.7.2007, p. 19-28.

Cross, D. E., McDevitt, R. M., Hillman, K., Acamovic, T. 2007. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. British Poultry Science, vol. 48, no. 4, p. 496-506. https://doi.org/10.1080/00071660701463221 PMid:17701503 DOI: https://doi.org/10.1080/00071660701463221

Dozier III, W. A., Kidd, M. T., Corzo, A., Anderson, J., Branton, S. L. 2006. Growth performance, meat yield, and economic responses of broilers provided diets varying in amino acid density from thirty-six to fifty-nine days of age. Journal of Applied Poultry Research, vol. 15, no. 3, p. 383-393. https://doi.org/10.1093/japr/15.3.383 DOI: https://doi.org/10.1093/japr/15.3.383

Dozier III, W. A., Corzo, A., Kidd, M. T., Tillman, P. B., Branton, S. L. 2009. Digestible Lysine Requirements of Male and Female Broilers from Fourteen to Twenty-Eight Days of Age. Poultry Science, vol. 88, no. 8, p. 1676-1682. https://doi.org/10.3382/ps.2008-00539 PMid:19590083 DOI: https://doi.org/10.3382/ps.2008-00539

Emmert, J. L., Baker, D. H. 1997. Use of the ideal protein concept for precision formulation of amino acid levels in broiler diets. Journal of Applied Poultry Research, vol. 6, no. 4, p. 462-470. https://doi.org/10.1093/japr/6.4.462 DOI: https://doi.org/10.1093/japr/6.4.462

Epifano, E., Genovese, S. 2013. Recent acquisitions on naturally occurring oxyprenylated secondary plant metabolites. In Brahmachari, G. Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds. Boca Raton, USA : CRC Press. p. 239-257. ISBN 9781439891674.

Fancher, B. I., Jensen, L. S. 1989. Influence on performance of three to six weeks old broilers of varying dietary protein contents with supplementation of essential amino acid requirements. Poultry Science, vol. 68, no. 1, p. 113-123. https://doi.org/10.3382/ps.0680113 PMid:2704667 DOI: https://doi.org/10.3382/ps.0680113

Faria, F. D. E., Rosa, P. S., Viera, B. S., Macari, M., Furlan, R. L. 2005. Protein levels and environmental temperature effects on carcass characteristics, performance, and nitrogen excretion of broiler chickens from 7 to 21 days of age. Brazilian Journal of Poultry Science, vol. 7, no. 4, p. 247-253. https://doi.org/10.1590/S1516-635X2005000400009 DOI: https://doi.org/10.1590/S1516-635X2005000400009

Genovese, S., Fiorito, S., Locatelli, M., Carlucci, G., Epifano, F. 2014. Analysis of biologically active oxyprenylated ferulic acid derivatives in citrus fruits. Plant Foods for Human Nutrition, vol. 69, no. 3, p. 255-260. https://doi.org/10.1007/s11130-014-0427-8 PMid:24928688 DOI: https://doi.org/10.1007/s11130-014-0427-8

Guimarães, R., Barros, L., Barreira, J. C. M., Sousa, M. J., Carvalho, A. M., Ferreira, I. C. F. R. 2009. Targeting excessive free radicals with peels and juices of citrus fruits: grapefruit, lemon, lime and orange. Food Chemical Toxicology, vol. 48, no. 1, p. 99-106. https://doi.org/10.1016/j.fct.2009.09.022 PMid:19770018 DOI: https://doi.org/10.1016/j.fct.2009.09.022

Hargis, P. H., Creger, C. R. 1980. Effects of varying dietary protein and energy levels on growth rate and body fat in broilers. Poultry Science, vol. 5, no. 7, p. 1499-1504. https://doi.org/10.3382/ps.0591499 DOI: https://doi.org/10.3382/ps.0591499

Harper, A. E., Benevenga, N. J., Wohlhueter, R. M. 1970. Efects of ingestion of disproportionate amounts of amino acids. Physiology Reviews, vol. 50, no. 3, p. 428-558. https://doi.org/10.1152/physrev.1970.50.3.428 PMid:4912906 DOI: https://doi.org/10.1152/physrev.1970.50.3.428

Haščík, P., Kačániová, M., Čuboň, J., Bobko, M., Nováková, I., Vavrišinová, K., Arpášová, H., Mihok, M. 2009. Aplication of Lactobacillus fermentum and its efect on chemical composition of ROSS PM3 chicken meat. Acta fytotechnica et zootechnica, vol. 12, p. 197-205.

Hossain, M. A., Islam, A. F., Iji, P. A. 2012. Energy utilization and performance of broiler chickens raised on diets with vegetable proteins or conventional feeds. Asian Journal of Poultry Science, vol., 6, no. 4, p. 117-128. https://doi.org/10.3923/ajpsaj.2012.117.128 DOI: https://doi.org/10.3923/ajpsaj.2012.117.128

Hossain, M. A., Islam, A. F., Iji, P. A. 2013. Growth responses, excreta quality, nutrient digestibility, bone development and meat yield traits of broiler chickens fed on vegetable or animal protein diets. South African Society for Animal Science, vol. 43, no. 2, p. 208-218. https://doi.org/10.4314/sajas.v43i2.11 DOI: https://doi.org/10.4314/sajas.v43i2.11

Iji, P. A., Saki, A., Tivey, D. R. 2001a. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, vol. 42, no. 4, p. 505-513. https://doi.org/10.1080/00071660120073151 PMid:11572627 DOI: https://doi.org/10.1080/00071660120073151

Iji, P. A., Saki, A., Tivey, D. R. 2001b. Body and intestinal growth of broiler chicks on a commercial starter diet. 2. Development and characteristics of intestinal enzymes. British Poultry Science, vol. 42, no. 4, p. 514-522. https://doi.org/10.1080/00071660120073142 PMid:11572628 DOI: https://doi.org/10.1080/00071660120073142

Ionescu, A., Aprodu, I., Alexe, P. 2009. General Technologies - Technology and Control in Industria meat (Tehnologii generale - Tehnologie si control în industria cărnii). Galaţi, Turky : Galaţi University Press. p. 123.

Jang, I. S., Ko, Y. H., Kang, S. Y., Lee, C. Y. 2007. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, vol. 134, no. 3-4, p. 304-315. https://doi.org/10.1016/j.anifeedsci.2006.06.009 DOI: https://doi.org/10.1016/j.anifeedsci.2006.06.009

Langhout, P. 2000. New additives for broiler chickens. Feed Mix, vol. 18, no. 6, p. 24-27.

Lawrie, R. A., Ledward, D. A. 2006. Lawrie's meat science. 7th ed. Abington Cambridge, UK : Woodhead Publishing Limited. p. 75-126. ISBN-13: 978-1845691592.

Lee, K. W., Everts, H., Kappert, H. J., Frehner, M., Losa, R., Beynen, A. C. 2003. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. British Poultry Science, vol. 44, no. 3, p. 450-457. https://doi.org/10.1080/0007166031000085508 PMid:12964629 DOI: https://doi.org/10.1080/0007166031000085508

Lillehoj, H. S., Lee, K. W. 2012. Immune modulation of innate immunity as alternatives-to-antibiotics strategies to mitigate the use of drugs in poultry production. Poultry Science, vol. 91, no. 6, p. 1286-1291. https://doi.org/10.3382/ps.2012-02374 PMid:22582284 DOI: https://doi.org/10.3382/ps.2012-02374

Lopez, G., Leeson, L. 2005. Utilization of metabolisable energy by young broilers and birds of intermediate growth rate. Poultry Science, vol. 84, no. 7, p. 1069-1076. https://doi.org/10.1093/ps/84.7.1069 PMid:16050124 DOI: https://doi.org/10.1093/ps/84.7.1069

Lopez, G., Leeson, S. 2008. Energy partitioning in broiler chickens: a review. Canadian Journal of Animal Science, vol. 8, no. 2, p. 205-212. https://doi.org/10.4141/CJAS07087 DOI: https://doi.org/10.4141/CJAS07087

Manthey, J. A., Grohmann, K. 2001. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. Journal of Agricultural and Food Chemistry, vol. 49, no. 7, p. 3268-3273. https://doi.org/10.1021/jf010011r PMid:11453761 DOI: https://doi.org/10.1021/jf010011r

Manzanilla, E. G., Perez, J. F., Kamel, C., Baucells, F., Gasa, J. 2004. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science, vol. 82, no. Suppl. 1, p. 3210-3218. DOI: https://doi.org/10.2527/2004.82113210x

Mbajiorgu, C. A., Ng'ambi, J. W., Norris, D. 2011. Effect of varying dietary energy to protein ratio level on growth and productivity of indigenous Venda chickens. Asian Journal of Animal and Veterinary Advances, vol. 6, no. 4, p. 344-352. https://doi.org/10.3923/ajava.2011.344.352 DOI: https://doi.org/10.3923/ajava.2011.344.352

Medveď, J., Angelovičová, M. 2010. Protein and fat in breast muscules of broilers in application welfare principles in practical conditions. Potravinarstvo Slovak Journal of Food Sciences, vol. 4, no. 3, p. 50-52. https://doi.org/10.5219/66 DOI: https://doi.org/10.5219/66

Močár, K., Štofan, D., Angelovičová, M., Kačániová, M. 2012. The use of origanum aetheroleum and probiotics in the chicken meat production. Nitra, Slovakia : Slovak University of Agriculture. p. 161.

Montanari, A., Chen, J., Widmer, W. 1998. Citrus flavonoids: a review of past biological activity against disease. In Manthey, J. A., Buslig, B. S. Flavonoids in the Living System. New York, USA : Plenum Press. p. 103-113. https://doi.org/10.1007/978-1-4615-5335-9_8 DOI: https://doi.org/10.1007/978-1-4615-5335-9_8

Moran, E. T. 1985. Digestion and absorption of carbohydrates in fowl and events through perinatal development. Journal of Nutrition, vol. 115, no. 5, p. 665-674. https://doi.org/10.1093/jn/115.5.665 PMid:2582103 DOI: https://doi.org/10.1093/jn/115.5.665

Munakata, R., Inoue, T., Koeduka, T., Sasaki, K., Tsurumaru, Y., Sugiyama, A., Uto, Y., Hori, H., Azuma, J., Yazaki. K. 2012. Characterization of coumarin-specific prenyltransferase activities in Citrus limon peel. Bioscience, Biotechnology, and Biochemistry, vol. 76, no. 7, p. 1389-1393. https://doi.org/10.1271/bbb.120192 PMid:22785469 DOI: https://doi.org/10.1271/bbb.120192

Nahashon, S. N., Adefope, N., Amenyenu, A., Wright, D. 2005. Effect of dietary metabolisable energy and crude protein concentrations on growth performance and carcass characteristics of French guinea fowl broilers. Poultry Science, vol. 84, no. 2, p. 337-344. https://doi.org/10.1093/ps/84.2.337 PMid:15742972 DOI: https://doi.org/10.1093/ps/84.2.337

NRC. 1994. National Research Council. 1994. Nutrient requirements of poultry. 9th ed. Washington, DC., USA : Academies Press. p. 1-155. ISBN 978-0-309-04892-7.

Oviedo-Rondon, E. O., Waldroup, P. W. 2002. Models to estimate amino acid requirements for broiler chickens: A review. International Journal of Poultry Science, vol. 1, no. 5, p. 106-113. https://doi.org/10.3923/ijps.2002.106.113 DOI: https://doi.org/10.3923/ijps.2002.106.113

Rafiq, S., Kaul, R., Sofi, S. A., Bashir, N., Nazir, F., Gulzar Ahmad Nayik, G. A. 2016. Citrus peel as a source of functional ingredient: a review. Journal of the Saudi Society of Agricultural Sciences. (IN PRESS) https://doi.org/10.1016/j.jssas.2016.07.006 DOI: https://doi.org/10.1016/j.jssas.2016.07.006

Rezaeipour, V., Aghajan Nejad, O. A., Miri, H. I. 2014. Growth performance, blood metabolites and jejunum morphology of broiler chickens fed diets containing earthworm (Eisenia foetida) meal as a source of protein. International Journal of Biomedical and Advance Research, vol. 2, 8, p. 483-2494.

Rostagno, H. S., Pupa, J. M. R., Pack, M. 1995. Diet formulation for broilers based on total versus digestible amino acid. Journal of Applied Poultry Research, vol. 4, no. 3, p. 293-299. https://doi.org/10.1093/japr/4.3.293 DOI: https://doi.org/10.1093/japr/4.3.293

Sakomura, N. K., Longo, F. A., Oviedo-Rondon, E. O., Boa-Viagem, C., Ferraudo, A. 2005. Modelling energy utilisation and growth parameter description for broiler chickens. Poultry Science, vol. 84, no. 9, p. 1363-1369. https://doi.org/10.1093/ps/84.9.1363 PMid:16206556 DOI: https://doi.org/10.1093/ps/84.9.1363

Samadi, F., Liebert, F. 2007. Lysine requirement of fast growing chickens: effects of age, sex, level of protein deposition and dietary lysine efficiency. Journal of Poultry Science, vol. 44, no. 1, p. 63-72. https://doi.org/10.2141/jpsa.44.63 DOI: https://doi.org/10.2141/jpsa.44.63

Shatnawi, K. 2014. Investigation of energy partitioning in modern broiler chickens : dissertation theses in Poultry nutrition. Palmerston North, New Zealand : Massey University. p. 218.

Si, J., Kersey, J. H., Fritts, C. A., Waldroup, P. W. 2004. An evaluation of the interaction of lysine and methionine in diets for growing broilers. International Journal of Poultry Science, vol. 3, no. 1, p. 51-60. https://doi.org/10.3923/ijps.2004.51.60 DOI: https://doi.org/10.3923/ijps.2004.51.60

Sterling, K. G., Pesti, G. M., Bakalli, R. I. 2006. Performance of different broiler genotypes fed diets with varying levels of dietary crude protein and lysine. Poultry Science, vol. 85, no. 6, p. 1045-1054. https://doi.org/10.1093/ps/85.6.1045 PMid:16776474 DOI: https://doi.org/10.1093/ps/85.6.1045

Straková, E., Jelínek, P., Suchý, P., Antonínová, M. 2002. Spectrum of amino acids in muscles of hybrid broilers during prolonged feeding. Czech Journal of Animal Science, vol. 47, no. 12, p. 519-526.

Tesseraud, S., Bouvarel, I., Collin, A., Audouin, E., Crochet, S., Seiliez, I., Leterrier, C. 2009. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle. Journal of Nutrition, vol. 139, no. 1, p. 38-43. https://doi.org/10.3945/jn.108.095752 PMid:19056657 DOI: https://doi.org/10.3945/jn.108.095752

Veldkamp, T., Kwakkel, R. P., Ferket, P. R., Verstegen, M. W. A. 2005. Growth responses to dietary energy and lysine at high and low ambient temperature in male Turkeys. Poultry Science, vol. 84, no. 2, p. 273-282. https://doi.org/10.1093/ps/84.2.273 PMid:15742964 DOI: https://doi.org/10.1093/ps/84.2.273

Wang, L., Wang, J., Fang, L., Zheng, Z., Dexian, Z., Wang, S., Li, S., Ho, C. T., Zhao, H. 2014. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. BioMed Research International, vol. 2014, p. 453972. https://doi.org/10.1155/2014/453972 PMid:25250322 DOI: https://doi.org/10.1155/2014/453972

Zarate, A., Moran, E., Burnham, D. 2003. Reducing crude protein and increasing limiting essential amino acid levels with summer-reared, slow-and fast-feathering broilers. Journal of Applied Poultry Research, vol. 12, no. 2, p. 160-168. https://doi.org/10.1093/japr/12.2.160 DOI: https://doi.org/10.1093/japr/12.2.160

Zhai, W., Araujo, L. F., Burgess, S. C., Cooksey, A. M., Pendarvis, K., Mercier, Y., Corzo, A. 2012. Protein expression in pectoral skeletal muscle of chickens as influenced by dietary methionine. Poultry Science, vol. 91, no. 10, p. 2548-2555. https://doi.org/10.3382/ps.2012-02213 PMid:22991541 DOI: https://doi.org/10.3382/ps.2012-02213

Zulkifli, I., Imanrahayu, H. S., Alimon, A. R., Vidyadaran, M. K., Babjee, S. A. 2001. Responses of choice-fed red jungle fowl and commercial broiler chickens offered a complete diet, corn and soybean. Asian Australasian Journal of Animal Sciences, vol. 14, no. 12, p. 1758-1762. https://doi.org/10.5713/ajas.2001.1758 DOI: https://doi.org/10.5713/ajas.2001.1758

Downloads

Published

2018-07-03

How to Cite

Angelovičová, M. ., Bučko, O. ., Angelovič, M. ., Zajác, P. ., Čapla, J. ., Šnirc, M. ., Tkáčová, J. ., & Klimentová, M. . (2018). Protein quality chicken meat after feeding with active substances of citrus fruits and diclazuril and salinomycin sodium. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 499–511. https://doi.org/10.5219/915