Methylxanthines and catechines in different teas (Camellia sinensis L. Kuntze) - influence on antioxidant properties
DOI:
https://doi.org/10.5219/796Keywords:
methylxantines, catechines, Camellia sinensis L., tea, antioxAbstract
In general, there are four basic types of tea: green (not fermented), black (fermented), oolong and white tea (partially fermented). The differences among these types are in the processing technology, which is largely reflected in their chemical composition. The most influential factor that significantly affects the quality and quantity of substances (biologically active) is the processing temperature, which causes changes in the composition (isomerization and/or transformation). The present paper focuses on monitoring content of three methylxanthines - alkaloids (caffeine, theophylline and theobromine), and seven flavan-3-ols - catechins ((+)-catechin (C), (-)-catechin-3-gallate (C-3-G), (-)-epicatechin (EC), (-)-epicatechin-3-gallate (EC-3-G), (-)-epigallocatechin-3-gallate (EGC-3-G), (-)-gallocatechin (GC) and (-)-gallocatechin-3-gallate (GC 3-G)), which are characteristic for tea. Attention was also given to the assessment of selected antioxidant parameters using spectrophotometric procedures (ABTS - radical cation decolorization assay and Phosphomolybdenum reducing antioxidant power assay) in relation to the determined substances using RP-HPLC/DAD analysis. Based on the results obtained, it can be concluded that a type of tea clearly affects the quality and quantity of the substances that have a positive impact on the consumer's health, significantly reflected in the levels of antioxidant active substances determined by the spectrophotometric procedures. The highest content of methylxanthin, catechins, polyphenols and antioxidant substances was recorded in the green tea sample GT3. The highest content of flavonoids and phenolic acids was recorded in the Pu-erh tea sample PT 5.
Downloads
References
Almajano, M. P., Carbó, R., Lopéz-Jiménez, J. A., Gordon, M. H. 2008. Antioxidant and antimicrobial activities of tea infusions. Food Chemistry, vol. 108, no. 1, p. 55-63. https://doi.org/10.1016/j.foodchem.2007.10.040
Árvay, J., Hauptvogl, M., Tomáš, J., Harangozo, Ľ. 2015. Determination of mercury, cadmium and lead contents in different tea and teas infusions (Camellia sinensis L.). Potravinarstvo, vol. 9, no. 1, p. 398-402. https://doi.org/10.5219/510
Bae, I. K., Ham, H. M., Jeong, M. H., Kim, D. H., Kim, H. J. 2015. Simultaneous determination of 15 phenolic compounds, and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimalization of extraction process. Food Chemistry, vol. 172, p. 469-475. https://doi.org/10.1016/j.foodchem.2014.09.050 PMid:25442580
Balentine, D. A., Wiseman, S. A., Bouwens, L. C. 1997. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition, vol. 37, no. 8, p. 693-704. https://doi.org/10.1080/10408399709527797 PMid:9447270
da Silva Pinto, M. 2013. Tea: a new perspective on health benefits. Food Research International, vol. 53, no. 2, p. 558-567. https://doi.org/10.1016/j.foodres.2013.01.038
FAO. 2015. World tea production and trade Current and future development. Food and Agriculture Organisation. Report. [online] s.a. [cit. 2017-01-17] Available at: http://www.fao.org/3/a-i4480e.pdf.
Farmakopea Polska, V. 1999. 5th ed. Warszawa : PTFarm., p. 880-881. ISBN: 83-88157-04-3.
Godočíková, L., Ivanišová, E., Árvay, J., Petrová, J., Kačániová, M. 2016. The comparison of biological activity of chocolates made by different technological procedures. Potravinarstvo, vol. 10, no. 1, p. 316-322. https://doi.org/10.5219/628
Halliwell, B. 2012. Free radical and antioxidants: Updating a personal view. Nutrition Reviews, vol. 70, no. 5, p. 257-265. https://doi.org/10.1111/j.1753-4887.2012.00476.x PMid:22537212
Hollman, P. C. H., Cassidy, A., Comte, B., Heinonen, M., Richelle, E. 2011. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. Journal of Nutrition, vol. 141, no. 5, p. 989-1009. https://doi.org/10.3945/jn.110.131490 PMid:21451125
Chung, F. L., Schwartz, J., Herzog, C. R., Yang, Y. M. 2003. Tea and cancer prevention: Studies in animals and humans. Journal of Nutriion, vol. 133, no. 10, p. 3268-3274.
Jeszka-Skowron, M., Krawczyk, M., Zgola-Grześkowiak, A. 2015. Determination of antioxidant aktivity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. Journal of Food Composition and Analysis, vol. 40, p. 70-77. https://doi.org/10.1016/j.jfca.2014.12.015
Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., Tsubono, Y., Tsuji, I. 2015. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. The Journal of thr Americam Medical Association, vol. 296, no. 10, p. 1255-1265.
Marcos, A., Fisher, A., Rea, G., Hill, S. J., 1998. Preliminary study using trace element concentrations and a chemometrics approach to determine geographical origin of tea. Journal of Analytical Atomic Spectrometry, vol. 13, p. 521-525. https://doi.org/10.1039/a708658j
Murakami, A. N. N., Amboni, R. D. M. C., Prudencio, E. S., Amante, E. R., Zanotta, L. M., Maraschin, M. 2013. Concentration of phenolic compounds in aqueous mate (Ilex paraguariensis A. St. Hil) extracts through nanofiltration. Food Chemistry, vol. 44, no. 10, p. 60-65. https://doi.org/10.1016/j.foodchem.2013.02.119 PMid:23768327
Nechuta, S., Shu, X. O., Li, H. L., Yang, G., Ji, B. T., Xiang, Y. B., Cai, H., Chow, W. H., Gao, Y. T., Zheng, W. 2012. Prospective cohort study of tea consumption and risk of digestive system cancers: results from the Shanghai Women's Health Study. The American Journal of Clinical Nutrition, vol. 96, no. 5, p. 1056-1063. https://doi.org/10.3945/ajcn.111.031419 PMid:23053557
Nováková, L., Spáčil, Z., Sifrtová, M., Opletal, L., Solich, P. 2010. Rapid qualitative and quantitative ultra high performance liquid chromatography method for simultaneous analysis of twenty nine common phenolic compounds of various structures. Talanta, vol. 80, no. 5, p. 1970-1979. https://doi.org/10.1016/j.talanta.2009.10.056 PMid:20152441
Oh, J., Jo, H., Cho, A. R., Kim, S. J., Han, J. 2013. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, vol. 31, no. 2, p. 403-409. https://doi.org/10.1016/j.foodcont.2012.10.021
Prieto, P., Pineda, M., Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, vol. 269, no. 2, p. 337-341. https://doi.org/10.1006/abio.1999.4019 PMid:10222007
Rahim, A. A., Nofrizal, S., Saad, B. 2014. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chemistry, vol. 147, p. 262-268. https://doi.org/10.1016/j.foodchem.2013.09.131 PMid:24206716
Re, R. N., Pellegrini, A., Pannala, M., Yang, R., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, vol. 26, no. 9-10, p. 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Scholz, S., Williamson, G. 2007. Interaction affecting the bioavailability of dietary polyphenols in vivo. International Journal of Vitamin and Nutrition Research, vol. 77, no. 3, p. 224-235. https://doi.org/10.1024/0300-9831.77.3.224 PMid:18214024
Sharangi, A. B. 2009. Medicinal and therapeutic potentialities of tea (Camellia sinensis, L.) - a review. Food Research International, vol. 42, no. 5-6, p. 529-535. https://doi.org/10.1016/j.foodres.2009.01.007
Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 16, p. 144-158.
Tsai, Y. S., Wang, H. F., Ou, A. S. M. 2008. Biological Functions and Manufacturing of GABA Tea. In Ho et al. Tea and tea products: Chemistry and health-promoting properties. United States : CRC Press. 320 p. ISBN-10: 0849380820. https://doi.org/10.1201/9781420008036.ch4
Wang, G., Helliwell, K. 2001. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Research International, vol. 34, no. 2-3, p. 223-227. https://doi.org/10.1016/S0963-9969(00)00156-3
Wang, H., Chen, L. G., Xu, Y., Zeng, Q. L., Zhang, X. P., Zhao, Q. 2011. Dynamic microwave-assisted extraction coupled on-line with clean-up for determination of caffeine in tea. LWT - Food Science and Technology, vol. 44, no. 6, p. 1490-1495. https://doi.org/10.1016/j.lwt.2011.01.015
Willett, W. C. 2002. Balancing life-style and genomics research for disease prevention. Science, vol. 292, no. 5568, p. 695-698. https://doi.org/10.1126/science.1071055 PMid:11976443
Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R. 2004. Flavonoids in food and their health benefits. Plant Food and Human Nutrition, vol. 59, no. 3, p. 113-122. https://doi.org/10.1007/s11130-004-0049-7 PMid:15678717
Yi, T., Zhu, L., Peng, W. L., He, X. C., Chen, H. L., Li, J., Yu, T., Liang, Z. T, Thao, Z. Z., Chen, H. B. 2015. Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT - Food Science and Technology, vol. 62, no. 1, p. 194-201. https://doi.org/10.1016/j.lwt.2015.01.003
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).