Enzymatic hydrolysis in food processing: biotechnological advancements, applications, and future perspectives


  • Dinara Akimova Shakarim University, Department of Food technology and biotechnology, 20A Glinki Street, 071412, Semey, Kazakhstan; Kazakh Research Institute of Processing and Food Industry (Semey Branch), 29 Bairursynov Street, 071410, Semey, Kazakhstan, Tel.: + 7 7222 314 602; +7 7222 770026 https://orcid.org/0000-0001-8922-2854
  • Aitbek Kakimov Shakarim University, Department of Food technology and biotechnology, 20A Glinki Street, 071412, Semey, Kazakhstan, Tel.: + 7 7222 314 602
  • Anuarbek Suychinov Kazakh Research Institute of Processing and Food Industry (Semey Branch), 29 Bairursynov Street, 071410, Semey, Kazakhstan, Tel.: +7 7222 770026
  • Zhumatay Urazbayev Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 "G", 050060, Almaty, Kazakhstan, Tel.: +7 7222 770026
  • Yerlan Zharykbasov Shakarim University, Department of Food technology and biotechnology, 20A Glinki Street, 071412, Semey, Kazakhstan, Tel.: + 7 7222 314 602
  • Nadir Ibragimov Shakarim University, Department of Technological Equipment and Mechanical Engineering, 20A Glinki Street, 071412, Semey, Kazakhstan, Tel.: + 7 7222 314 602
  • Aigul Bauyrzhanova Shakarim University, Department of Food technology and biotechnology, 20A Glinki Street, 071412, Semey, Kazakhstan, Tel.: + 7 7222 314 602
  • Assiya Utegenova Shakarim University, Department of Food technology and biotechnology, 20A Glinki Street, 071412, Semey, Kazakhstan, Tel.: + 7 7222 314 602 https://orcid.org/0000-0003-3378-6815




enzymatic hydrolysis, food processing, biotechnology, protein hydrolysis, carbohydrate hydrolysis


In food processing, enzymatic hydrolysis has become a revolutionary biotechnological instrument that provides consistency and sustainability that are unmatched by traditional techniques. This work thoroughly analyzes current developments in enzymatic hydrolysis and examines its uses in various food processing contexts. The biotechnological aspects—such as substrate specificity, enzyme engineering, and sustainable process optimization—are the main focus. The historical background and development of enzymatic hydrolysis in food processing are explored at the study's outset, highlighting the process's transformation from a specialized use to a critical component of contemporary biotechnological food production. A thorough literature review underscores the specificity of enzymes in dissolving various dietary components, offering insights into the biotechnological nuances controlling substrate-enzyme interactions. A careful examination of the many enzymes used in enzymatic hydrolysis and a full assessment of their uses and specificities are provided. Enzymatic hydrolysis selection criteria are outlined, taking regulatory compliance, thermostability, pH sensitivity, and substrate specificity into account. The integration of enzymatic hydrolysis into workflows for food processing is also covered, focusing on compatibility with current infrastructure and processing parameters. The case studies that demonstrate the effective use of enzymatic hydrolysis in various food production situations are the core of the research. These examples illustrate the adaptability and effectiveness of enzymatic processes in improving food quality, from developing gluten-free products to optimizing fermentation in baked goods. In its futuristic conclusion, the article imagines how enzymatic hydrolysis will continue to influence food processing in the years to come. The biotechnological viewpoint strongly emphasizes current research directions, such as integrating enzymatic processes into sustainable food production techniques and engineering enzymes for increased specificity. This biotechnological investigation highlights how enzymatic hydrolysis may completely change the food processing industry by providing accuracy, sustainability, and creativity in pursuing wholesome, nutrient-dense, and aesthetically pleasing food items.


Download data is not yet available.


Metrics Loading ...


Yuan, Q., Liu, S., Ma, M.-G., Ji, X.-X., Choi, S.-E., & Si, C. (2021). The Kinetics Studies on Hydrolysis of Hemicellulose. In Frontiers in Chemistry (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fchem.2021.781291 DOI: https://doi.org/10.3389/fchem.2021.781291

Arola, S., Malho, J., Laaksonen, P., Lille, M., & Linder, M. B. (2013). The role of hemicellulose in nanofibrillated cellulose networks. In Soft Matter (Vol. 9, Issue 4, pp. 1319–1326). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c2sm26932e DOI: https://doi.org/10.1039/C2SM26932E

Malek, M.I.A., A.S. Azmi, and N.I.M. Puad. Review on applications of sago starch processing effluent. 2016.

You, W., Duan, B., Wang, M., & Lam, W. (2011). Isothermal and Non-isothermal Crystallization Kinetics of Poly(L-Lactide)/Carbonated Hydroxyapatite Nanocomposite Microspheres. In Advances in Diverse Industrial Applications of Nanocomposites. InTech. https://doi.org/10.5772/14715 DOI: https://doi.org/10.5772/14715

Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., & Wang, F. (2023). Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. In Foods (Vol. 12, Issue 21, p. 4027). MDPI AG. https://doi.org/10.3390/foods12214027 DOI: https://doi.org/10.3390/foods12214027

Dent, T., & Maleky, F. (2022). Pulse protein processing: The effect of processing choices and enzymatic hydrolysis on ingredient functionality. In Critical Reviews in Food Science and Nutrition (Vol. 63, Issue 29, pp. 9914–9925). Informa UK Limited. https://doi.org/10.1080/10408398.2022.2070723 DOI: https://doi.org/10.1080/10408398.2022.2070723

Wubshet, S. G., Måge, I., Böcker, U., Lindberg, D., Knutsen, S. H., Rieder, A., Rodriguez, D. A., & Afseth, N. K. (2017). FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. In Analytical Methods (Vol. 9, Issue 29, pp. 4247–4254). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c7ay00865a DOI: https://doi.org/10.1039/C7AY00865A

Pascale, N. C., Chastinet, J. J., Bila, D. M., Sant̀Anna, G. L., Jr, Quitério, S. L., & Vendramel, S. M. R. (2018). Enzymatic hydrolysis of floatable fatty wastes from dairy and meat food-processing industries and further anaerobic digestion. In Water Science and Technology (Vol. 79, Issue 5, pp. 985–992). IWA Publishing. https://doi.org/10.2166/wst.2018.508 DOI: https://doi.org/10.2166/wst.2018.508

Lim, J. Y., Chai, T.-T., Lam, M. Q., Ng, W. J., & Ee, K. Y. (2022). In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. In Journal of Food Measurement and Characterization (Vol. 16, Issue 5, pp. 3477–3487). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-022-01433-y DOI: https://doi.org/10.1007/s11694-022-01433-y

Sharma, V., Tsai, M.-L., Nargotra, P., Chen, C.-W., Kuo, C.-H., Sun, P.-P., & Dong, C.-D. (2022). Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. In Catalysts (Vol. 12, Issue 11, p. 1373). MDPI AG. https://doi.org/10.3390/catal12111373 DOI: https://doi.org/10.3390/catal12111373

Hanlon, P., & Sewalt, V. (2020). GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. In Critical Reviews in Food Science and Nutrition (Vol. 61, Issue 6, pp. 959–970). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1749026 DOI: https://doi.org/10.1080/10408398.2020.1749026

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Silano, V., Barat Baviera, J. M., Bolognesi, C., Brüschweiler, B. J., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mortensen, A., Rivière, G., Steffensen, I., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Glandorf, B., Herman, L., … Chesson, A. (2019). Characterisation of microorganisms used for the production of food enzymes [JB]. EFSA Journal, 17(6). https://doi.org/10.2903/j.efsa.2019.5741 DOI: https://doi.org/10.2903/j.efsa.2019.5741

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (EFSA CEP Panel), Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Glandorf, B., Herman, L., … Chesson, A. (2021). Scientific Guidance for the submission of dossiers on Food Enzymes [JB]. EFSA Journal, 19(10). https://doi.org/10.2903/j.efsa.2021.6851 DOI: https://doi.org/10.2903/j.efsa.2021.6851

Love, M., Bhandari, D., Dobson, R., & Billington, C. (2018). Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. In Antibiotics (Vol. 7, Issue 1, p. 17). MDPI AG. https://doi.org/10.3390/antibiotics7010017 DOI: https://doi.org/10.3390/antibiotics7010017

Blum, T. R., Liu, H., Packer, M. S., Xiong, X., Lee, P.-G., Zhang, S., Richter, M., Minasov, G., Satchell, K. J. F., Dong, M., & Liu, D. R. (2021). Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. In Science (Vol. 371, Issue 6531, pp. 803–810). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.abf5972 DOI: https://doi.org/10.1126/science.abf5972

Packer, M. S., Rees, H. A., & Liu, D. R. (2017). Phage-assisted continuous evolution of proteases with altered substrate specificity. In Nature Communications (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41467-017-01055-9 DOI: https://doi.org/10.1038/s41467-017-01055-9

Ronau, J. A., Beckmann, J. F., & Hochstrasser, M. (2016). Substrate specificity of the ubiquitin and Ubl proteases. In Cell Research (Vol. 26, Issue 4, pp. 441–456). Springer Science and Business Media LLC. https://doi.org/10.1038/cr.2016.38 DOI: https://doi.org/10.1038/cr.2016.38

Meyer, J. G., Kim, S., Maltby, D. A., Ghassemian, M., Bandeira, N., & Komives, E. A. (2014). Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases. In Molecular & Cellular Proteomics (Vol. 13, Issue 3, pp. 823–835). Elsevier BV. https://doi.org/10.1074/mcp.m113.034710 DOI: https://doi.org/10.1074/mcp.M113.034710

Nguyen, L. M., & Fox, K. M. (2019). Enzyme Kinetic Characterization and Substrate Specificity of Schizophyllum commune Metacaspases. In The FASEB Journal (Vol. 33, Issue S1). Wiley. https://doi.org/10.1096/fasebj.2019.33.1_supplement.781.12 DOI: https://doi.org/10.1096/fasebj.2019.33.1_supplement.781.12

Rietschel, B., Bornemann, S., Arrey, T. N., Baeumlisberger, D., Karas, M., & Meyer, B. (2009). Membrane protein analysis using an improved peptic in‐solution digestion protocol. In PROTEOMICS (Vol. 9, Issue 24, pp. 5553–5557). Wiley. https://doi.org/10.1002/pmic.200900532 DOI: https://doi.org/10.1002/pmic.200900532

Spolaore, B., Polverino de Laureto, P., Zambonin, M., & Fontana, A. (2004). Limited Proteolysis of Human Growth Hormone at Low pH: Isolation, Characterization, and Complementation of the Two Biologically Relevant Fragments 1−44 and 45−191. In Biochemistry (Vol. 43, Issue 21, pp. 6576–6586). American Chemical Society (ACS). https://doi.org/10.1021/bi049491g DOI: https://doi.org/10.1021/bi049491g

Bai, Y., Wang, J., Zhang, Z., Shi, P., Luo, H., Huang, H., Feng, Y., & Yao, B. (2010). Extremely Acidic β-1,4-Glucanase, CelA4, from Thermoacidophilic Alicyclobacillus sp. A4 with High Protease Resistance and Potential as a Pig Feed Additive. In Journal of Agricultural and Food Chemistry (Vol. 58, Issue 3, pp. 1970–1975). American Chemical Society (ACS). https://doi.org/10.1021/jf9035595 DOI: https://doi.org/10.1021/jf9035595

Lim, S. J., & Oslan, S. N. (2021). Native to designed: microbial α-amylases for industrial applications. In PeerJ (Vol. 9, p. e11315). PeerJ. https://doi.org/10.7717/peerj.11315 DOI: https://doi.org/10.7717/peerj.11315

Kumari, N., Sushil, Malik, K., & Avtar, R. (2019). Microbial amylases: An overview on recent advancement. In Journal of entomology and zoology studies (Vol. 7, p. 198–205). Society of Agricultural Research and Social Development.

Xie, X., Ban, X., Gu, Z., Li, C., Hong, Y., Cheng, L., & Li, Z. (2020). Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity. In Journal of Agricultural and Food Chemistry (Vol. 68, Issue 3, pp. 838–844). American Chemical Society (ACS). https://doi.org/10.1021/acs.jafc.9b07234 DOI: https://doi.org/10.1021/acs.jafc.9b07234

Janeček, Š., Svensson, B., & MacGregor, E. A. (2013). α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. In Cellular and Molecular Life Sciences (Vol. 71, Issue 7, pp. 1149–1170). Springer Science and Business Media LLC. https://doi.org/10.1007/s00018-013-1388-z DOI: https://doi.org/10.1007/s00018-013-1388-z

Rittenauer, M., Gladis, S., Gastl, M., & Becker, T. (2021). Gelatinization or Pasting? The Impact of Different Temperature Levels on the Saccharification Efficiency of Barley Malt Starch. In Foods (Vol. 10, Issue 8, p. 1733). MDPI AG. https://doi.org/10.3390/foods10081733 DOI: https://doi.org/10.3390/foods10081733

Yuan, J., Wang, X., Yin, D., Wang, M., Yin, X., Lei, Z., & Guo, Y. (2017). Effect of different amylases on the utilization of cornstarch in broiler chickens. In Poultry Science (Vol. 96, Issue 5, pp. 1139–1148). Elsevier BV. https://doi.org/10.3382/ps/pew323 DOI: https://doi.org/10.3382/ps/pew323

Barbosa, M. S., Freire, C. C. C., Almeida, L. C., Freitas, L. S., Souza, R. L., Pereira, E. B., Mendes, A. A., Pereira, M. M., Lima, Á. S., & Soares, C. M. F. (2019). Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. In Biotechnology and Applied Biochemistry (Vol. 66, Issue 5, pp. 823–832). Wiley. https://doi.org/10.1002/bab.1793 DOI: https://doi.org/10.1002/bab.1793

Souza, G. P. R., Correia, T. B. A., Reis, W. S. M., Bredda, E. H., Da Rós, P. C. M., & Pereira, E. B. (2022). Enzymatic Hydrolysis of Waste Cooking Oil by Lipase Catalysis: Simplex Mixture Design Optimization. In Catalysis Letters (Vol. 153, Issue 3, pp. 689–697). Springer Science and Business Media LLC. https://doi.org/10.1007/s10562-022-04025-z DOI: https://doi.org/10.1007/s10562-022-04025-z

Qiao, H., Zhang, F., Guan, W., Zuo, J., & Feng, D. (2016). Optimisation of combi‐lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil. In Animal Science Journal (Vol. 88, Issue 5, pp. 772–780). Wiley. https://doi.org/10.1111/asj.12718 DOI: https://doi.org/10.1111/asj.12718

HIRAYAMA, O. (1964). Glyceride Structure and Biosynthesis of Natural Fats. In Agricultural and Biological Chemistry (Vol. 28, Issue 4, pp. 193–200). Oxford University Press (OUP). https://doi.org/10.1271/bbb1961.28.193 DOI: https://doi.org/10.1271/bbb1961.28.193

Jensen, R. G., Sampugna, J., & Pereira, R. L. (1964). Intermolecular Specificity of Pancreatic Lipase and the Structural Analysis of Milk Triglycerides. In Journal of Dairy Science (Vol. 47, Issue 7, pp. 727–732). American Dairy Science Association. https://doi.org/10.3168/jds.s0022-0302(64)88753-1 DOI: https://doi.org/10.3168/jds.S0022-0302(64)88753-1

Lim, S. Y., Steiner, J. M., & Cridge, H. (2022). Lipases: it’s not just pancreatic lipase! In American Journal of Veterinary Research (Vol. 83, Issue 8). American Veterinary Medical Association (AVMA). https://doi.org/10.2460/ajvr.22.03.0048 DOI: https://doi.org/10.2460/ajvr.22.03.0048

Xiao, X., & Lowe, M. E. (2015). The β5-Loop and Lid Domain Contribute to the Substrate Specificity of Pancreatic Lipase-related Protein 2 (PNLIPRP2). In Journal of Biological Chemistry (Vol. 290, Issue 48, pp. 28847–28856). Elsevier BV. https://doi.org/10.1074/jbc.m115.683375 DOI: https://doi.org/10.1074/jbc.M115.683375

Qamar, S. A., Qamar, M., Bilal, M., Bharagava, R. N., Ferreira, L. F. R., Sher, F., & Iqbal, H. M. N. (2021). Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. In International Journal of Biological Macromolecules (Vol. 185, pp. 1–19). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2021.06.079 DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.079

Zajki-Zechmeister, K., Kaira, G. S., Eibinger, M., Seelich, K., & Nidetzky, B. (2021). Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose. In ACS Catalysis (Vol. 11, Issue 21, pp. 13530–13542). American Chemical Society (ACS). https://doi.org/10.1021/acscatal.1c03465 DOI: https://doi.org/10.1021/acscatal.1c03465

Berlemont, R. (2022). The Potential for Cellulose Deconstruction in Fungal Genomes. In Encyclopedia (Vol. 2, Issue 2, pp. 990–1003). MDPI AG. https://doi.org/10.3390/encyclopedia2020065 DOI: https://doi.org/10.3390/encyclopedia2020065

Resch, M. G., Donohoe, B. S., Baker, J. O., Decker, S. R., Bayer, E. A., Beckham, G. T., & Himmel, M. E. (2013). Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. In Energy & Environmental Science (Vol. 6, Issue 6, p. 1858). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c3ee00019b

You, C., Liu, Y.-J., Cui, Q., & Feng, Y. (2023). Glycoside Hydrolase Family 48 Cellulase: A Key Player in Cellulolytic Bacteria for Lignocellulose Biorefinery. In Fermentation (Vol. 9, Issue 3, p. 204). MDPI AG. https://doi.org/10.3390/fermentation9030204 DOI: https://doi.org/10.3390/fermentation9030204

Halliwell, G., & Griffin, M. (1973). The nature and mode of action of the cellulolytic component C1 of Trichoderma koningii on native cellulose. In Biochemical Journal (Vol. 135, Issue 4, pp. 587–594). Portland Press Ltd. https://doi.org/10.1042/bj1350587 DOI: https://doi.org/10.1042/bj1350587

Venezia, V., Califano, V., Pota, G., Costantini, A., Landi, G., & Di Benedetto, A. (2020). CFD Simulations of Microreactors for the Hydrolysis of Cellobiose to Glucose by β-Glucosidase Enzyme. In Micromachines (Vol. 11, Issue 9, p. 790). MDPI AG. https://doi.org/10.3390/mi11090790 DOI: https://doi.org/10.3390/mi11090790

Yepes, C., Estévez, J., Arroyo, M., & Ladero, M. (2022). Immobilization of an Industrial β-Glucosidase from Aspergillus fumigatus and Its Use for Cellobiose Hydrolysis. In Processes (Vol. 10, Issue 6, p. 1225). MDPI AG. https://doi.org/10.3390/pr10061225 DOI: https://doi.org/10.3390/pr10061225

Wei, H., Wang, W., Alper, H. S., Xu, Q., Knoshaug, E. P., Van Wychen, S., Lin, C.-Y., Luo, Y., Decker, S. R., Himmel, M. E., & Zhang, M. (2019). Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. In Frontiers in Microbiology (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fmicb.2018.03276 DOI: https://doi.org/10.3389/fmicb.2018.03276

Wang, J., Liu, S., Li, Y., Wang, H., Xiao, S., Li, C., & Liu, B. (2017). Central carbon metabolism influences cellulase production in Bacillus licheniformis. In Letters in Applied Microbiology (Vol. 66, Issue 1, pp. 49–54). Oxford University Press (OUP). https://doi.org/10.1111/lam.12813 DOI: https://doi.org/10.1111/lam.12813

Sultana, S., Sawrav, Md. S. S., Das, S. R., Alam, M., Aziz, Md. A., Hossain, Md. A.-A., & Haque, Md. A. (2022). Isolation and Biochemical Characterization of Cellulase Producing Goat Rumen Bacteria. In Proceedings of International Conference on Emerging Trends in Engineering and Advanced Science. International Conference on Emerging Trends in Engineering and Advanced Science. AIJR Publisher. https://doi.org/10.21467/proceedings.123.12 DOI: https://doi.org/10.21467/proceedings.123.12

Singh Jadaun, J. (2018). Pectinase: A Useful Tool in Fruit Processing Industries. In Nutrition & Food Science International Journal (Vol. 5, Issue 5). Juniper Publishers. https://doi.org/10.19080/nfsij.2018.05.555673 DOI: https://doi.org/10.19080/NFSIJ.2018.05.555673

Adapa, V., Ramya, L. N., Pulicherla, K. K., & Rao, K. R. S. S. (2014). Cold Active Pectinases: Advancing the Food Industry to the Next Generation. In Applied Biochemistry and Biotechnology (Vol. 172, Issue 5, pp. 2324–2337). Springer Science and Business Media LLC. https://doi.org/10.1007/s12010-013-0685-1 DOI: https://doi.org/10.1007/s12010-013-0685-1

Satapathy, S., Rout, J. R., Kerry, R. G., Thatoi, H., & Sahoo, S. L. (2020). Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing. In Frontiers in Nutrition (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fnut.2020.00117 DOI: https://doi.org/10.3389/fnut.2020.00117

Haile, S., & Ayele, A. (2022). Pectinase from Microorganisms and Its Industrial Applications. In S. Rodriguez-Couto (Ed.), The Scientific World Journal (Vol. 2022, pp. 1–15). Hindawi Limited. https://doi.org/10.1155/2022/1881305 DOI: https://doi.org/10.1155/2022/1881305

Wormit, A., & Usadel, B. (2018). The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). In International Journal of Molecular Sciences (Vol. 19, Issue 10, p. 2878). MDPI AG. https://doi.org/10.3390/ijms19102878 DOI: https://doi.org/10.3390/ijms19102878

Biz, A., Farias, F. C., Motter, F. A., de Paula, D. H., Richard, P., Krieger, N., & Mitchell, D. A. (2014). Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works! In V. N. Uversky (Ed.), PLoS ONE (Vol. 9, Issue 10, p. e109529). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0109529

Wu, H.-C., Bulgakov, V. P., & Jinn, T.-L. (2018). Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. In Frontiers in Plant Science (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fpls.2018.01612 DOI: https://doi.org/10.3389/fpls.2018.01612

Yadav, S., Yadav, P. K., Yadav, D., & Yadav, K. D. S. (2009). Pectin lyase: A review. In Process Biochemistry (Vol. 44, Issue 1, pp. 1–10). Elsevier BV. https://doi.org/10.1016/j.procbio.2008.09.012 DOI: https://doi.org/10.1016/j.procbio.2008.09.012

Biz, A., Farias, F. C., Motter, F. A., de Paula, D. H., Richard, P., Krieger, N., & Mitchell, D. A. (2014). Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works! In V. N. Uversky (Ed.), PLoS ONE (Vol. 9, Issue 10, p. e109529). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0109529 DOI: https://doi.org/10.1371/journal.pone.0109529

Toy, J. Y. H., Lu, Y., Huang, D., Matsumura, K., & Liu, S.-Q. (2020). Enzymatic treatment, unfermented and fermented fruit-based products: current state of knowledge. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 7, pp. 1890–1911). Informa UK Limited. https://doi.org/10.1080/10408398.2020.1848788 DOI: https://doi.org/10.1080/10408398.2020.1848788

Keggi, C., & Doran-Peterson, J. (2020). The Homogalacturonan Deconstruction System of Paenibacillus amylolyticus 27C64 Requires No Extracellular Pectin Methylesterase and Has Significant Industrial Potential. In E. R. Master (Ed.), Applied and Environmental Microbiology (Vol. 86, Issue 12). American Society for Microbiology. https://doi.org/10.1128/aem.02275-19 DOI: https://doi.org/10.1128/AEM.02275-19

Zhao, Li-li., Tian, CH-r., Hua, J. I., & Shuang, L. (2007). Research Actuality of Microbe Pectinases and its Application in Fruits and Vegetables Processing. In Progress in Modern Biomedicine (Issue 6, pp. 951–953). Ministry of Science and Technology of China Statistic.

Duvetter, T., Sila, D. N., Van Buggenhout, S., Jolie, R., Van Loey, A., & Hendrickx, M. (2009). Pectins in Processed Fruit and Vegetables: Part I—Stability and Catalytic Activity of Pectinases. In Comprehensive Reviews in Food Science and Food Safety (Vol. 8, Issue 2, pp. 75–85). Wiley. https://doi.org/10.1111/j.1541-4337.2009.00070.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00070.x

Rafique, N., Bashir, S., Khan, M. Z., Hayat, I., Orts, W., & Wong, D. W. S. (2021). Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain. In K. S. Ahmad (Ed.), PLOS ONE (Vol. 16, Issue 12, p. e0256562). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0256562 DOI: https://doi.org/10.1371/journal.pone.0256562

Hashim, H., Maskat, M. Y., Mustapha, W. A. W., Mamot, S., & Saadiah, I. (2013). Optimization of enzymatic hydrolysis of cockle (Anadara Granosa) meat wash water precipitate for the development of seafood flavor. In International Food Research Journal (Vol. 20, Issue 6, pp. 3053–3059). Universiti Putra Malaysia.

Dong, Y., Yan, W., Zhang, X.-D., Dai, Z.-Y., & Zhang, Y.-Q. (2021). Steam Explosion-Assisted Extraction of Protein from Fish Backbones and Effect of Enzymatic Hydrolysis on the Extracts. In Foods (Vol. 10, Issue 8, p. 1942). MDPI AG. https://doi.org/10.3390/foods10081942 DOI: https://doi.org/10.3390/foods10081942

Liang, X., Qian, G., Yang, H., Chen, N., Ai, Z., Xing, Y., Huang, W., Xu, L., Li, M., Wang, Z., Zheng, Y., & Yue, X. (2023). Evaluation of IgG/IgE‐binding capacity and functional properties of enzymatic hydrolysis in skimmed cow milk system. In Journal of Food Science (Vol. 88, Issue 7, pp. 2780–2795). Wiley. https://doi.org/10.1111/1750-3841.16579 DOI: https://doi.org/10.1111/1750-3841.16579

Fang, Fu-y., Miao, Y-l., & Song, W-d. (2009). Compound Enzymatic Hydrolysis of Paphia undulate Meat and Development of Its Functional Oral Liquid. In Food Science (Vol. 30, Issue 18, pp. 412–415). China Food Publishing Co.

Izadyar, L., Friboulet, A., Remy, M. H., Roseto, A., & Thomas, D. (1993). Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity. In Proceedings of the National Academy of Sciences (Vol. 90, Issue 19, pp. 8876–8880). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.90.19.8876 DOI: https://doi.org/10.1073/pnas.90.19.8876

Lu, J., Jiang, X., Zhen, L., Luan, H.-F., Chen, H., Wang, X.-J., & Ching, C.-B. (2010). Cloning, expression, purification and characterization of the carboxylesterase Yeig from Escherichia coli k12. In African Journal of Microbiology Research (Vol. 4, Issue 9, pp. 757–765). Academic Journals.

Inagami, T., & Mitsuda, H. (1964). The Mechanism of the Specificity of Trypsin Catalysis. In Journal of Biological Chemistry (Vol. 239, Issue 5, pp. 1388–1394). Elsevier BV. https://doi.org/10.1016/s0021-9258(18)91326-8 DOI: https://doi.org/10.1016/S0021-9258(18)91326-8

Navanietha Krishnaraj, R., David, A., & Sani, R. K. (2017). Fundamentals of Enzymatic Processes. In Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy (pp. 5–29). Springer International Publishing. https://doi.org/10.1007/978-3-319-54684-1_2 DOI: https://doi.org/10.1007/978-3-319-54684-1_2

Lingenfelder, M., Tomba, G., Costantini, G., Colombi Ciacchi, L., De Vita, A., & Kern, K. (2007). Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single‐Molecule Level. In Angewandte Chemie International Edition (Vol. 46, Issue 24, pp. 4492–4495). Wiley. https://doi.org/10.1002/anie.200700194 DOI: https://doi.org/10.1002/anie.200700194

Pan, R., Zhang, X.-J., Zhang, Z.-J., Zhou, Y., Tian, W.-X., & He, R.-Q. (2010). Substrate-induced Changes in Protease Active Site Conformation Impact on Subsequent Reactions with Substrates. In Journal of Biological Chemistry (Vol. 285, Issue 30, pp. 22950–22956). Elsevier BV. https://doi.org/10.1074/jbc.m110.103549 DOI: https://doi.org/10.1074/jbc.M110.103549

Venditto, I., Najmudin, S., Luís, A. S., Ferreira, L. M. A., Sakka, K., Knox, J. P., Gilbert, H. J., & Fontes, C. M. G. A. (2015). Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and β-1,3–1,4-Glucans through Distinct Mechanisms. In Journal of Biological Chemistry (Vol. 290, Issue 17, pp. 10572–10586). Elsevier BV. https://doi.org/10.1074/jbc.m115.637827

Venditto, I., Najmudin, S., Luís, A. S., Ferreira, L. M. A., Sakka, K., Knox, J. P., Gilbert, H. J., & Fontes, C. M. G. A. (2015). Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and β-1,3–1,4-Glucans through Distinct Mechanisms. In Journal of Biological Chemistry (Vol. 290, Issue 17, pp. 10572–10586). Elsevier BV. https://doi.org/10.1074/jbc.m115.637827 DOI: https://doi.org/10.1074/jbc.M115.637827

Morgillo, C. M., Lupia, A., Deplano, A., Pirone, L., Fiorillo, B., Pedone, E., Luque, F. J., Onnis, V., Moraca, F., & Catalanotti, B. (2022). Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. In International Journal of Molecular Sciences (Vol. 23, Issue 24, p. 15502). MDPI AG. https://doi.org/10.3390/ijms232415502 DOI: https://doi.org/10.3390/ijms232415502

Kisselev, A. F., Akintola, O., & Smith, J. (2021). Abstract 1396: Non-competitive inhibition of proteasome by kinase inhibitors. In Cancer Research (Vol. 81, Issue 13_Supplement, pp. 1396–1396). American Association for Cancer Research (AACR). https://doi.org/10.1158/1538-7445.am2021-1396 DOI: https://doi.org/10.1158/1538-7445.AM2021-1396

Sanchez, O. F., Lee, J., Yu King Hing, N., Kim, S.-E., Freeman, J. L., & Yuan, C. (2017). Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression. In Metallomics (Vol. 9, Issue 2, pp. 149–160). Oxford University Press (OUP). https://doi.org/10.1039/c6mt00198j DOI: https://doi.org/10.1039/C6MT00198J

Cole, R. N., Chen, W., Pascal, L. E., Nelson, J. B., Wipf, P., & Wang, Z. (2022). (+)-JJ-74–138 is a Novel Noncompetitive Androgen Receptor Antagonist. In Molecular Cancer Therapeutics (Vol. 21, Issue 4, pp. 483–492). American Association for Cancer Research (AACR). https://doi.org/10.1158/1535-7163.mct-21-0432 DOI: https://doi.org/10.1158/1535-7163.MCT-21-0432

Mondal, A., Bhat, I. A., Karunakaran, S., & De, M. (2021). Supramolecular Interaction of Molecular Cage and β‐Galactosidase: Application in Enzymatic Inhibition, Drug Delivery and Antimicrobial Activity. In ChemBioChem (Vol. 22, Issue 11, pp. 1955–1960). Wiley. https://doi.org/10.1002/cbic.202100008 DOI: https://doi.org/10.1002/cbic.202100008

Sampedro, L. J. G., Grimaldos, N. A. G., Pereañez, J. A., & Montoya, J. E. Z. (2019). Lipids as competitive inhibitors of subtilisin carlsberg in the enzymatic hydrolysis of proteins in red tilapia (oreochromis sp.) viscera: insights from kinetic models and a molecular docking study. In Brazilian Journal of Chemical Engineering (Vol. 36, Issue 2, pp. 647–655). FapUNIFESP (SciELO). https://doi.org/10.1590/0104-6632.20190362s20180346 DOI: https://doi.org/10.1590/0104-6632.20190362s20180346

Brazdausks, P., Godina, D., & Puke, M. (2023). Phosphorus-Containing Catalyst Impact on Furfural and Glucose Production during Consecutive Hydrothermal Pretreatment and Enzymatic Hydrolysis. In Fermentation (Vol. 9, Issue 9, p. 803). MDPI AG. https://doi.org/10.3390/fermentation9090803 DOI: https://doi.org/10.3390/fermentation9090803

ZHANG, R.-H., HU, Q.-Z., KANG, Q., QI, L.-B., PANG, Y.-P., & YU, L. (2021). Research on Competitive Enzymatic Hydrolysis-Assisted Liquid Crystal-based Acetylcholine Sensor. In Chinese Journal of Analytical Chemistry (Vol. 49, Issue 2, pp. e21014–e21019). Elsevier BV. https://doi.org/10.1016/s1872-2040(20)60081-0 DOI: https://doi.org/10.1016/S1872-2040(20)60081-0

Padron‐Regalado, E., Mejía‐Olvera, E. E., Marruffo‐Carmona, A. M., Solís‐Suárez, J. C., Peralta‐Agapito, D., & Medina‐Rivero, E. (2023). Efficient enzymatic hydrolysis for enriching the antioxidant content of agro‐food industrial residues. In JSFA reports (Vol. 3, Issue 9, pp. 420–428). Wiley. https://doi.org/10.1002/jsf2.145 DOI: https://doi.org/10.1002/jsf2.145

Areeya, S., Tawai, A., & Sriariyanun, M. (2020). Model-Based Control for Fed-Batch Enzymatic Hydrolysis Reactor of Lignocellulosic Biomass. In 2020 6th International Conference on Control, Automation and Robotics (ICCAR). 2020 6th International Conference on Control, Automation and Robotics (ICCAR). IEEE. https://doi.org/10.1109/iccar49639.2020.9108066 DOI: https://doi.org/10.1109/ICCAR49639.2020.9108066

Baranwal, J., Lhospice, S., Kanade, M., Chakraborty, S., Gade, P. R., Harne, S., Herrou, J., Mignot, T., & Gayathri, P. (2019). Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility. In A. M. Stock (Ed.), PLOS Biology (Vol. 17, Issue 9, p. e3000459). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pbio.3000459 DOI: https://doi.org/10.1371/journal.pbio.3000459

Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., Falfán-Cortés, R. N., & Román-Gutiérrez, A. D. (2018). Enzyme activity during germination of different cereals: A review. In Food Reviews International (Vol. 35, Issue 3, pp. 177–200). Informa UK Limited. https://doi.org/10.1080/87559129.2018.1514623 DOI: https://doi.org/10.1080/87559129.2018.1514623

Chang-po, S. (2013). Study on the factors to affect the activity of zearalenone degrading enzyme ZLHY6. In Science and Technology of Cereals, Oils and Foods. National Food Authority only non-profit research institutions - Academy of State Grain Administration.

BravoRodriguez, V., JuradoAlameda, E., MartinezGallegos, J. F., ReyesRequena, A., & GarciaLopez, A. I. (2006). Enzymatic Hydrolysis of Soluble Starch with an α-Amylase from Bacillus licheniformis. In Biotechnology Progress (Vol. 22, Issue 3, pp. 718–722). Wiley. https://doi.org/10.1021/bp060057a DOI: https://doi.org/10.1021/bp060057a

Donovan, J. W., & Hansen, L. U. (1971). The β‐n‐acetylglucosaminidase activity of egg white. 1. Kinetics of the Reaction and Determination of the Factors Affecting the Stability of the Enzyme in Egg White. In Journal of Food Science (Vol. 36, Issue 1, pp. 174–177). Wiley. https://doi.org/10.1111/j.1365-2621.1971.tb02063.x DOI: https://doi.org/10.1111/j.1365-2621.1971.tb02063.x

Nazarov, K., Sagdiyev, X., Shukurxonova, M., & Karimova, K. (2022). Features of enzymatic hydrolysis of fibers of genetically different cotton lines. In S. Sadullozoda, Z. Usmanov, & A. Gibadullin (Eds.), International Conference on Remote Sensing of the Earth: Geoinformatics, Cartography, Ecology, and Agriculture (RSE 2022). SPIE. https://doi.org/10.1117/12.2643189 DOI: https://doi.org/10.1117/12.2643189

Vogelsang-O’Dwyer, M., Sahin, A. W., Arendt, E. K., & Zannini, E. (2022). Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. In Foods (Vol. 11, Issue 9, p. 1307). MDPI AG. https://doi.org/10.3390/foods11091307 DOI: https://doi.org/10.3390/foods11091307

Saini, R., Patel, A. K., Saini, J. K., Chen, C.-W., Varjani, S., Singhania, R. R., & Di Dong, C. (2022). Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. In Bioengineered (Vol. 13, Issue 2, pp. 2139–2172). Informa UK Limited. https://doi.org/10.1080/21655979.2021.2023801 DOI: https://doi.org/10.1080/21655979.2021.2023801

Sharikov, A., Amelyakina, M., Serba, E., Ivanov, V., Polivanovskaya, D., & Abramova, I. (2022). Steam Extraction System Use in the Gluten-Free Cereal Snacks Technology. In Food Industry (Vol. 7, Issue 4, pp. 6–14). Ural State University of Economics. https://doi.org/10.29141/2500-1922-2022-7-4-1 DOI: https://doi.org/10.29141/2500-1922-2022-7-4-1

Sharikov, A. Yu., Ivanov, V. V., Sokolova, E. N., Amelyakina, M. V., & Serba, E. (2023). Technological aspects of obtaining gluten-free cereal products based on biocatalytic and hydrothermomechanical processes. In Proceedings of the 1st International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies.” I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies.” Kemerovo State University. https://doi.org/10.21603/-i-ic-152 DOI: https://doi.org/10.21603/-I-IC-152

Medvid, I., Shydlovska, O., & Dotsenko, V. (2019). The use of sunflower lecithin in the technology on gluten-free bread with enzymatic modification of flour starch. In Journal of Faculty of Food Engineering (Vol. 17, Issue 4, pp. 352–362). Stefan cel Mare University of Suceava.

Kroghsbo, S., Andersen, N. B., Rasmussen, T. F., Jacobsen, S., & Madsen, C. B. (2014). Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats. In N. J. Mantis (Ed.), PLoS ONE (Vol. 9, Issue 9, p. e107137). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0107137 DOI: https://doi.org/10.1371/journal.pone.0107137

Dotsenko, V., Medvid, I., Shydlovska, O., & Ishchenko, T. (2019). Studying the possibility of using enzymes, lecithin, and albumen in the technology of gluten-free bread. In Eastern-European Journal of Enterprise Technologies (Vol. 1, Issue 11 (97), pp. 42–51). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2019.154957 DOI: https://doi.org/10.15587/1729-4061.2019.154957

Espinoza-Herrera, J., Martínez, L. M., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2021). Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems. In Foods (Vol. 10, Issue 1, p. 118). MDPI AG. https://doi.org/10.3390/foods10010118 DOI: https://doi.org/10.3390/foods10010118

Wang, J., Bai, H., Zhang, R., Ding, G., Cai, X., Wang, W., Zhu, G., Zhou, P., & Zhang, Y. (2023). Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread. In Journal of Microbiology and Biotechnology (Vol. 33, Issue 12, pp. 1671–1680). Korean Society for Microbiology and Biotechnology. https://doi.org/10.4014/jmb.2305.05008 DOI: https://doi.org/10.4014/jmb.2305.05008




How to Cite

Akimova, D., Kakimov, A., Suychinov, A., Urazbayev, Z., Zharykbasov, Y., Ibragimov, N., Bauyrzhanova, A., & Utegenova, A. (2024). Enzymatic hydrolysis in food processing: biotechnological advancements, applications, and future perspectives. Potravinarstvo Slovak Journal of Food Sciences, 18, 347–365. https://doi.org/10.5219/1962

Most read articles by the same author(s)