Application of a new brine of sprouted grains for delicatessen products from horse meat, beef, and pork

Authors

  • Gulimira Kenenbay Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77023205856
  • Tamara Tultabayeva Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77089728228
  • Urishbay Chomanov Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77017884556
  • Gulzhan Zhumaliyeva Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+77787930493
  • Aruzhan Shoman Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+77787930493

DOI:

https://doi.org/10.5219/1939

Keywords:

recipe, functional products, delicatessen products, brine, vegetable additives

Abstract

The main task of the meat processing industry is to produce meat products as the primary source of animal protein that ensures the vital activity of the human body in the necessary volumes, high quality, and a diverse assortment. Providing the population with high-quality food products that are biologically complete, balanced in the composition of the primary nutrients, and enriched with target physiologically active components is one of the most priority scientific and technical problems to be solved. In this regard, a recipe for a new brine from sprouted grains for delicatessen products from horse meat, beef, and pork was developed. The composition of the new brine includes flavoring and aromatic ingredients, juice of sprouted grains, and juices of raw vegetable materials. The viscosity of horse meat, beef, and pork during massaging was studied. Thermodynamic parameters such as water activity and moisture binding energy of horse meat, beef, and pork using a new brine were studied. The data analysis shows that the values of the “aw” indicator and the moisture binding energy in the experimental samples of meat products are higher than in the control samples. Studies have found that with an increase in the activity of water and the moisture binding energy, the tenderness of finished delicatessen meat products with a new brine increases. As a result, it was found that the maximum amount of brine in horse meat is retained at 160 minutes of continuous massaging, in beef – at 130 minutes, in pork – at 120 minutes of mechanical processing.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Zhukova, S. B., & Stepanenko, T. S. (2010). Review of development of promising directions for creating functional products for herodietic nutrition of people suffering from diseases of the musculoskeletal system. In Processes and Apparatuses of Food Production (Vol. 1, p. 23). ITMO University.

Potipayeva, N. N., Gurinovich, G. V., & Patrakova, I. S. (2008). Food additives and protein preparations for the meat industry. In Technological Institute of Food Industry (168 p.). Kemerovo Technological Institute of Food Industry.

Nunes, J. L., Piquerez, M., Pujadas, L., Armstrong, E., Fernández, A., & Lecumberry, F. (2015). Beef quality parameters estimation using ultrasound and color images. In BMC Bioinformatics (Vol. 16, Issue S4). Springer Science and Business Media LLC. https://doi.org/10.1186/1471-2105-16-s4-s6 DOI: https://doi.org/10.1186/1471-2105-16-S4-S6

Bazarnova, Y. G. (2010). Improving the nutritional value of meat products. In Meat Industry (Vol. 3, p. 17). Meat Industry’ Journal, LLC.

Kuzmicheva, M. B. (2010). The Russian market of non-traditional meats. In Meat Industry (Vol. 6, p. 21). Meat Industry’ Journal, LLC.

Caraveo, O., Alarcon-Rojo, A. D., Renteria, A., Santellano, E., & Paniwnyk, L. (2014). Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. In Journal of the Science of Food and Agriculture (Vol. 95, Issue 12, pp. 2487–2493). Wiley. https://doi.org/10.1002/jsfa.6979 DOI: https://doi.org/10.1002/jsfa.6979

Ježek, F., Kameník, J., Macharáčková, B., Bogdanovičová, K., & Bednář, J. (2019). Cooking of meat: effect on texture, cooking loss and microbiological quality – a review. In Acta Veterinaria Brno (Vol. 88, Issue 4, pp. 487–496). University of Veterinary and Pharmaceutical Sciences. https://doi.org/10.2754/avb201988040487 DOI: https://doi.org/10.2754/avb201988040487

Chomanov, U., Kenenbay, G., Tursynov, A., Zhumalieva, T., & Tultabayev, N. (2023). The Influence of Various Combinations of Aging and Freezing/Defrosting Modes on the Quality Indicators of Saanen Goat Meat. In OnLine Journal of Biological Sciences (Vol. 23, Issue 4, pp. 451–457). Science Publications. https://doi.org/10.3844/ojbsci.2023.451.457 DOI: https://doi.org/10.3844/ojbsci.2023.451.457

GOST 13586.5-2015. Grain. Method of moisture content determination. (2019). Moscow, Standardinform. (p. 16).

GOST 10846-91. Grain and products of its processing. Method for determination of protein. (2009). Moscow, Standardinform.

GOST 26176-2019 Fodders, mixed feeds. Methods for determination of soluble and hydrolysable carbohydrates. (2019). Moscow, Standardinform.

GOST 32195-2013 (ISO 13903:2005). Feed, compound feed. Method for determining amino acid content. (2020). Moscow, Standardinform.

GOST R 51478-99. Meat and meat products. Reference method for measurement of pH. (2014). Moscow, Standardinform.

GOST 33319-2015. Meat and meat products. Method for determination of moisture content. (2019). Moscow, Standardinform.

GOST ISO 21807-2015. Microbiology of food products and feed. Determination of water activity. (2016). Moscow, Standardinform.

Fatyanov, E. V. (2016). Biotechnology in the production of food of animal origin: guidelines for performing laboratory work for the direction of preparation. In Food products of animal origin (70 p.). Federal State Educational Institution of Higher Education Saratov State Agrarian University Retrieved from https://www.vavilovsar.ru/files/pages/27220/14722088195.pdf?ysclid=lvgmqbjoq0300279928.

GOST 9959-2015. Meat and meat products. General conditions of organoleptical assessment. (2016). Moscow, Standardinform.

Rogov, I. A., Tokaev, E. S., Kovalev, Y. I., & Tolstoguzov, V. B. (1992). Collagen and its rational content in meat products: Part 1. Analytical studies. In Meat Science (Vol. 31, Issue 1, pp. 35–42). Elsevier BV. https://doi.org/10.1016/0309-1740(92)90070-k DOI: https://doi.org/10.1016/0309-1740(92)90070-K

Kenenbai, G. S., Chomanov, U. C., Omirzhanova, B. B., Tatieva, A. N., Kassymbek, R., & Zhumaliyeva, G. (2022). Processing of beef rumen with ultrasonic waves. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 810–823). HACCP Consulting. https://doi.org/10.5219/1794 DOI: https://doi.org/10.5219/1794

Nasrollahzadeh, F., Alexi, N., Skov, K. B., Roman, L., Sfyra, K., & Martinez, M. M. (2024). Texture profiling of muscle meat benchmarks and plant-based analogues: An instrumental and sensory design approach with focus on correlations. In Food Hydrocolloids (Vol. 151, p. 109829). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2024.109829 DOI: https://doi.org/10.1016/j.foodhyd.2024.109829

Kiswanto, Hadiyanto, & Sediyono, E. (2024). Modification of the Haar Wavelet Algorithm for Texture Identification of Types of Meat Using Machine Learning. In Proceedings of Data Analytics and Management (pp. 225–239). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6547-2_18 DOI: https://doi.org/10.1007/978-981-99-6547-2_18

Bruce, H. L., & Aalhus, J. L. (2022). Advances in the understanding and measurement of meat texture. In New Aspects of Meat Quality (pp. 163–194). Elsevier. https://doi.org/10.1016/b978-0-323-85879-3.00015-5 DOI: https://doi.org/10.1016/B978-0-323-85879-3.00015-5

Schreuders, F. K. G., Schlangen, M., Kyriakopoulou, K., Boom, R. M., & van der Goot, A. J. (2021). Texture methods for evaluating meat and meat analogue structures: A review. In Food Control (Vol. 127, p. 108103). Elsevier BV. https://doi.org/10.1016/j.foodcont.2021.108103 DOI: https://doi.org/10.1016/j.foodcont.2021.108103

Food Technology Corporation. (2020). Food Texture Analyser Brochure. Retrieved from https://www.si-instruments.com.au/products/test-stands/food-texture-analyser.html.

Honsor, O., & Oberyshyn, R. (2023). A Computerised System for Monitoring Water Activity in Food Products Using Wireless Technologies. In Advances in Artificial Systems for Logistics Engineering III (pp. 393–403). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36115-9_36 DOI: https://doi.org/10.1007/978-3-031-36115-9_36

Conceição, S., Queiroga, M. C., & Laranjo, M. (2023). Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. In Microorganisms (Vol. 11, Issue 10, p. 2581). MDPI AG. https://doi.org/10.3390/microorganisms11102581 DOI: https://doi.org/10.3390/microorganisms11102581

Kumar, Y., Bashir, A. A., & Choudhary, P. (2023). Processed Meat Products. In Fat Mimetics for Food Applications (pp. 313–342). Wiley. https://doi.org/10.1002/9781119780045.ch15

Miyahira, R. F., Lopes, J. de O., & Antunes, A. E. C. (2021). The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. In Plant Foods for Human Nutrition (Vol. 76, Issue 2, pp. 143–152). Springer Science and Business Media LLC. https://doi.org/10.1007/s11130-021-00888-6 DOI: https://doi.org/10.1007/s11130-021-00888-6

Dubtsov, G. G., Berezhnaya, O.V., & Voino L. I. (2013). Improving the microbiological safety of sprouted wheat grain. In Food industry (Vol. 6, pp. 28–29). Publishing House «Food Industry».

Iztayev, A., Yakiyayeva, M., Kulazhanov, T., Kizatova, M., Maemerov, M., Stankevych, G., Toxanbayeva, B., & Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. In Acta Technica CSAV (Vol. 63, Issue 1, pp. 1–10). Academy of Sciences of the Czech Republic.

Hwang, I. H., & Thompson, J. M. (2001). The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. In Meat Science (Vol. 58, Issue 2, pp. 135–144). Elsevier BV. https://doi.org/10.1016/s0309-1740(00)00141-8 DOI: https://doi.org/10.1016/S0309-1740(00)00141-8

May, S. G., Mies, W. L., Edwards, J. W., Harris, J. J., Morgan, J. B., Garrett, R. P., Williams, F. L., Wise, J. W., Cross, H. R., & Savell, J. W. (2000). Using live estimates and ultrasound measurements to predict beef carcass cutability. In Journal of Animal Science (Vol. 78, Issue 5, p. 1255). Oxford University Press (OUP). https://doi.org/10.2527/2000.7851255x DOI: https://doi.org/10.2527/2000.7851255x

Tursunbayeva, S., Iztayev, A., Mynbayeva, A., Alimardanova, M., Iztayev, B., & Yakiyayeva, M. (2021). Development of a highly efficient ion-ozone cavitation technology for accelerated bread production. In Scientific Reports (Vol. 11, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-021-98341-w DOI: https://doi.org/10.1038/s41598-021-98341-w

Iztayev, A., Baibatyrov, T., Mukasheva, T., Muldabekova, B., & Yakiyayeva, M. (2020). Experimental studies of the baisheshek barley grain processed by the ion-ozone mixture. Periodico Tche Quimica, (Vol. 17, Issue 35, pp. 239–258). https://doi.org/10.52571/PTQ.v17.n35.2020.22_IZTAYEV_pgs_239_258.pdf DOI: https://doi.org/10.52571/PTQ.v17.n35.2020.22_IZTAYEV_pgs_239_258.pdf

Xu, S., & Falsafi, S. R. (2023). Juiciness of Meat, Meat Products, and Meat Analogues: Definition, Evaluation Methods, and Influencing Factors. In Food Reviews International (pp. 1–34). Informa UK Limited. https://doi.org/10.1080/87559129.2023.2273923 DOI: https://doi.org/10.1080/87559129.2023.2273923

Simonova, I., Drachuk, U., Halukh, B., Basarab, І., Koval, H., & Kinash, S. (2023). Innovative meat products from non-traditional sources. In Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies (Vol. 25, Issue 100, pp. 26–34). Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv. https://doi.org/10.32718/nvlvet-f10005

Kumar, Y., Bashir, A. A., & Choudhary, P. (2023). Processed Meat Products. In Fat Mimetics for Food Applications (pp. 313–342). Wiley. https://doi.org/10.1002/9781119780045.ch15 DOI: https://doi.org/10.1002/9781119780045.ch15

Biryukova, T. V., Enkina, C. V., Vorozheykina, T. M., Ashmarina, T. I., & Yagudaeva, N. A. (2023). The approach to assessing the characteristics significant for consumers when buying meat and meat products of organic origin. In V. Trukhachev, I. Jafarov, A. Shitikova, R. Migunov, & V. Kukhar (Eds.), BIO Web of Conferences (Vol. 66, p. 14015). EDP Sciences. https://doi.org/10.1051/bioconf/20236614015 DOI: https://doi.org/10.1051/bioconf/20236614015

Biryukova, T., & Ashmarina, T. (2023). Approach to assessing consumers’ purchasing choices for premium meat and meat products. In M. Pushkarev (Ed.), E3S Web of Conferences (Vol. 460, p. 11015). EDP Sciences. https://doi.org/10.1051/e3sconf/202346011015 DOI: https://doi.org/10.1051/e3sconf/202346011015

Munekata, P. E. S., Domínguez, R., Pateiro, M., Andrés, S. C., Santos, E. M., Fraqueza, M. J., Campagnol, P. C. B., & Lorenzo, J. M. (2023). Meat and meat products: animal species, products, processing, quality, and shelf life. In Meat and Meat Replacements (pp. 45–76). Elsevier. https://doi.org/10.1016/b978-0-323-85838-0.00001-8 DOI: https://doi.org/10.1016/B978-0-323-85838-0.00001-8

Simonova, I., Drachuk, U., Halukh, B., Basarab, І., Koval, H., & Kinash, S. (2023). Innovative meat products from non-traditional sources. In Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies (Vol. 25, Issue 100, pp. 26–34). Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv. https://doi.org/10.32718/nvlvet-f10005 DOI: https://doi.org/10.32718/nvlvet-f10005

Zahorulko, A., Cherevko, O., Zagorulko, A., Yancheva, M., Budnyk, N., Nakonechna, Y., Oliynyk, N., & Novgorodska, N. (2021). Design of an apparatus for low-temperature processing of meat delicacies. In Eastern-European Journal of Enterprise Technologies (Vol. 5, Issue 11 (113), pp. 6–12). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.240675 DOI: https://doi.org/10.15587/1729-4061.2021.240675

Nemkov, G. G., Belousov, V. I., & Bazarbayev, S. B. (2020). Properties of dynamics of microbiological seeding of equipment for serving slicing of meat delicacies from beef meat. In Problems of Veterinary Sanitation, Hygiene and Ecology (Vol. 1, Issue 2, pp. 236–239). The publishing house - Scientific liвrary. https://doi.org/10.36871/vet.san.hyg.ecol.202002018 DOI: https://doi.org/10.36871/vet.san.hyg.ecol.202002018

Shakin, A. P. (2021). Qualimetric forecasting of quality requirements for meat delicacies. In Russian State Agrarian University-Moscow State Agricultural Academy named after K. A. Timiryazev. Agrobiotechnology-2021. Publishing house RGAU-MSHA. https://doi.org/10.26897/978-5-9675-1855-3-2021-256 DOI: https://doi.org/10.26897/978-5-9675-1855-3-2021-256

Krasnikova, E. S., Morgunova, N. L., Krasnikov, A. V., Ivanova, Z. I., Shorina, A. V., & Sukharev, M. I. (2021). Development of technology for cooked smoked lamb products using ultrasonic treatment. In IOP Conference Series: Earth and Environmental Science (Vol. 845, Issue 1, p. 012085). IOP Publishing. https://doi.org/10.1088/1755-1315/845/1/012085 DOI: https://doi.org/10.1088/1755-1315/845/1/012085

Mohan, A., & Long, J. M. (2021). Valorization of wastes and by-products from the meat industry. In Valorization of Agri-Food Wastes and By-Products (pp. 457–474). Elsevier. https://doi.org/10.1016/b978-0-12-824044-1.00010-6 DOI: https://doi.org/10.1016/B978-0-12-824044-1.00010-6

Gheorghe-Irimia, R.-A., Tapaloaga, D., Petcu, C.-D., Ghimpeteanu, O. M., & Militaru, M. (2023). Current trends in the application of vaccinium myrtillus and aronia melanocarpa as natural preservatives in meat and meat products: a review. In Scientific Papers Journal Veterinary series (Vol. 66, Issue 1, pp. 48–52). https://doi.org/10.61900/spjvs.2023.01.10 DOI: https://doi.org/10.61900/SPJVS.2023.01.10

Echegaray, N., Rosmini, M., Fernandez, J., Munekata, P. E. S., Frizzo, L., Campagnol, P. C. B., & Lorenzo, J. M. (2023). Natural Additives in Meat Products as Antioxidants and Antimicrobials. In Functional Meat Products (pp. 111–124). Springer US. https://doi.org/10.1007/978-1-0716-3573-5_9 DOI: https://doi.org/10.1007/978-1-0716-3573-5_9

St. Pierre, S. R., Rajasekharan, D., Darwin, E. C., Linka, K., Levenston, M. E., & Kuhl, E. (2023). Discovering the mechanics of artificial and real meat. In Computer Methods in Applied Mechanics and Engineering (Vol. 415, p. 116236). Elsevier BV. https://doi.org/10.1016/j.cma.2023.116236 DOI: https://doi.org/10.1016/j.cma.2023.116236

Siegel, D. G., Theno, D. M., & Schmidt, G. R. (1978). Meat massaging: the effects of salt, phosphate and massaging on the presence of specific skeletal muscle proteins in the exudate of a sectioned and formed ham. In Journal of Food Science (Vol. 43, Issue 2, pp. 327–330). Wiley. https://doi.org/10.1111/j.1365-2621.1978.tb02297.x DOI: https://doi.org/10.1111/j.1365-2621.1978.tb02297.x

Palamarchuk, I., Shtonda, O., Semeniuk, K., Topchii, O., & Petryna, A. (2023). Physical and mathematical modelling of the massing process of marinated pork and beef preparation technology. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, pp. 929–944). HACCP Consulting. https://doi.org/10.5219/1926 DOI: https://doi.org/10.5219/1926

Sharedeh, D., Mirade, P.-S., Venien, A., & Daudin, J.-D. (2015). Analysis of salt penetration enhancement in meat tissue by mechanical treatment using a tumbling simulator. In Journal of Food Engineering (Vol. 166, pp. 377–383). Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2015.06.023 DOI: https://doi.org/10.1016/j.jfoodeng.2015.06.023

Gombozhapova, N. I., Bazhenova, B. A., Leskova, S. Yu., Badmaeva, T. M., & Danilov, A. M. (2017). Influence of the new multicomponent brine on the quality characteristics of the boiled horse meat product. In Foods and Raw materials (Vol. 5, Issue 1, pp. 11–19). Kemerovo State University. https://doi.org/10.21179/2308-4057-2017-1-11-19 DOI: https://doi.org/10.21179/2308-4057-2017-1-11-19

Studref. (2024). Ways to increase the nutritional value of culinary meat products. Justification of the technology of minced semi-finished meat products and ready culinary products using sprouted wheat grain. Retrieved from: https://studref.com/547670/tovarovedenie/obosnovanie_tehnologii_myasnyh_rublenyh_polufabrikatov_gotovyh_kulinarnyh_izdeliy_ispolzovaniem_pror#aftercont.

Downloads

Published

2024-05-20

How to Cite

Kenenbay, G., Tultabayeva, T., Chomanov, U., Zhumaliyeva, G., & Shoman, A. (2024). Application of a new brine of sprouted grains for delicatessen products from horse meat, beef, and pork. Potravinarstvo Slovak Journal of Food Sciences, 18, 408–424. https://doi.org/10.5219/1939

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.