Processing of beef rumen with ultrasonic waves
DOI:
https://doi.org/10.5219/1794Keywords:
resource conservation, offal, beef rumen, ultrasound treatment, cutting effortsAbstract
The article discusses the main trends in processing animal products, the development of technologies to improve their quality and technologies to preserve the quality indicators of the product over time. A review of the effects of ultrasound treatment on beef rumen is presented, and the main directions of ultrasound application are determined. The advantages of ultrasonic processing and its influence on the characteristics of raw meat were researched. The modes and parameters (frequency, intensity and duration) of ultrasound treatment of muscle tissue were established based on the results. This study evaluated the effect of ultrasound treatment on beef rumen's physical, microstructural and organoleptic characteristics. The physicochemical, mineral, microbiological, vitamin and amino acid composition of beef rumen and reticulum were also studied. Based on the results of the presented review, it can be concluded that the development of technologies for processing beef rumen with ultrasound is of potential interest. The optimal parameters are 400 and 600 W/m2, with a frequency of 40 kHz, for 50-60 minutes.
Downloads
Metrics
References
Antipova, L. V. (2012). Fundamentals of rational use of secondary collagen-containing raw materials of the meat industry. Voronezh, VGTA (248 p.).
Patshina, M. V. (2013). Development of technology of cooked meat products using collagen semi-finished pork skin. [Doctoral dissertation, Kemerovo] (22 p.). KemTIPP. Available at: https://tekhnosfera.com/razrabotka-tehnologii-varenyh-myasnyh-produktov-s-ispolzovaniem-kollagenovogo-polufabrikata-iz-svinoy-shkurki
Uglov, B. A., Shelepov, B. G., Boroday, E. V., & Slepchuk, V. A. (2021). Prospects for using secondary resources of meat processing industries based on patent research. In Innovations and Food Safety (Issue 3, pp. 39–46). Federal State Educational Institution of Higher Education Novosibirsk State Agrarian University. https://doi.org/10.31677/2311-0651-2020-29-3-39-46 DOI: https://doi.org/10.31677/2311-0651-2020-29-3-39-46
Storublevtsev, S. A. (2009). Obtaining and application of functional collagen hydrolysate of connective tissues of farm animals. [Doctoral dissertation, Voronezh] (pp. 32–39). VGTA. Available at: https://tekhnosfera.com/poluchenie-i-primenenie-funktsionalnogo-gidrolizata-kollagena-soedinitelnyh-tkaney-selskohozyaystvennyh-zhivotnyh
Ünver, A. (2016). Applications of ultrasound in food processing. In Green Chemistry & Technology Letters (Vol. 2, Issue 3, pp. 121–126). GIAP Journals. https://doi.org/10.18510/gctl.2016.231 DOI: https://doi.org/10.18510/gctl.2016.231
Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. In Ultrasonics Sonochemistry (Vol. 18, Issue 4, pp. 813–835). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2010.11.023
Terefe, N. S., Sikes, A. L., & Juliano, P. (2016). Ultrasound for Structural Modification of Food Products. In Innovative Food Processing Technologies (pp. 209–230). Elsevier. https://doi.org/10.1016/b978-0-08-100294-0.00008-0 DOI: https://doi.org/10.1016/B978-0-08-100294-0.00008-0
Kentish, S., & Feng, H. (2014). Applications of Power Ultrasound in Food Processing. In Annual Review of Food Science and Technology (Vol. 5, Issue 1, pp. 263–284). Annual Reviews. https://doi.org/10.1146/annurev-food-030212-182537 DOI: https://doi.org/10.1146/annurev-food-030212-182537
Nunes, J. L., Piquerez, M., Pujadas, L., Armstrong, E., Fernández, A., & Lecumberry, F. (2015). Beef quality parameters estimation using ultrasound and color images. In BMC Bioinformatics (Vol. 16, Issue S4). Springer Science and Business Media LLC. https://doi.org/10.1186/1471-2105-16-s4-s6 DOI: https://doi.org/10.1186/1471-2105-16-S4-S6
Fulladosa, E., De Prados, M., García-Perez, J.V., Benedito, J., Muñoz, I., Arnau, J., & Gou, P. (2013). Determination of dry-cured ham composition using X-ray absorption and ultrasound technologies, 59th International Congress of Meat Science and Technology, Izmir, Turkey (S7B-3).
GOST 33692-2015. (2015). Animal proteins are connective tissue. General specifications. Interstate standard. Moscow: Standartinform (6 p.) Available at: https://online.zakon.kz/Document/?doc_id=35626448&pos=2;-90#pos=2;-90
Grau, R., & Hamm, G. (1953). Eine Einfache Methode zur Bestimmung der Wasserbindung in Muskel. In Die Naturwissenschaften (Vol. 40, pp. 29–30). Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/BF00595734
Antipova, L.V., Glotova, I.A., Rogov I.A. (2004). Methods for the study of meat and meat products. Textbook. M.: Kolos (571 p.)
AOAC (2002). Official methods of analysis of association of official analytical chemists (17th ed.). Washington (AOAC, 1115 p.).
Caraveo, O., Alarcon-Rojo, A. D., Renteria, A., Santellano, E., & Paniwnyk, L. (2014). Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. In Journal of the Science of Food and Agriculture (Vol. 95, Issue 12, pp. 2487–2493). Wiley. https://doi.org/10.1002/jsfa.6979 DOI: https://doi.org/10.1002/jsfa.6979
Jayasooriya, S. D., Bhandari, B. R., Torley, P., & D'Arcy, B. R. (2004). Effect of High Power Ultrasound Waves on Properties of Meat: A Review. In International Journal of Food Properties (Vol. 7, Issue 2, pp. 301–319). Informa UK Limited. https://doi.org/10.1081/jfp-120030039
Hwang, I. H., & Thompson, J. M. (2001). The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. In Meat Science (Vol. 58, Issue 2, pp. 135–144). Elsevier BV. https://doi.org/10.1016/s0309-1740(00)00141-8 DOI: https://doi.org/10.1016/S0309-1740(00)00141-8
Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. In LWT - Food Science and Technology (Vol. 41, Issue 10, pp. 2151–2158). Elsevier BV. https://doi.org/10.1016/j.lwt.2007.12.003 DOI: https://doi.org/10.1016/j.lwt.2007.12.003
Hopkins, D. L., & Ferrier, G. R. (2000). The tenderness of lamb meat after low voltage stimulation under commercial conditions. In Asian Australasian Journal of Animal Sciences (Vol. B, pp. 356–357). Kisti.
Hopkins, D. L., & Thompson, J. M. (2001). Inhibition of protease activity part 1. The effect on tenderness and indicators of proteolysis in ovine muscle. In Meat Science (Vol. 59, pp. 175–185). Elsevier BV DOI: https://doi.org/10.1016/S0309-1740(01)00068-7
Hopkins, D. L., & Thompson, J. M. (2002). The relationship between post-mortem calcium concentration or pH and indicators of proteolysis in ovine muscle. In Meat Science (Vol. 61, Issue 4, pp. 411–414). Elsevier BV. https://doi.org/10.1016/s0309-1740(01)00213-3 DOI: https://doi.org/10.1016/S0309-1740(01)00213-3
Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V., & Wheeler, T. L. (2003). The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle. In Journal of Animal Science (Vol. 81, Issue 3, pp. 676–682). Oxford University Press (OUP). https://doi.org/10.2527/2003.813676x DOI: https://doi.org/10.2527/2003.813676x
May, S. G., Mies, W. L., Edwards, J. W., Harris, J. J., Morgan, J. B., Garrett, R. P., Williams, F. L., Wise, J. W., Cross, H. R., & Savell, J. W. (2000). Using live estimates and ultrasound measurements to predict beef carcass cutability. In Journal of Animal Science (Vol. 78, Issue 5, p. 1255). Oxford University Press (OUP). https://doi.org/10.2527/2000.7851255x DOI: https://doi.org/10.2527/2000.7851255x
Thériault, M., Pomar, C., & Castonguay, F. W. (2009). Accuracy of real-time ultrasound measurements of total tissue, fat, and muscle depths at different measuring sites in lamb1. In Journal of Animal Science (Vol. 87, Issue 5, pp. 1801–1813). Oxford University Press (OUP). https://doi.org/10.2527/jas.2008-1002 DOI: https://doi.org/10.2527/jas.2008-1002
Hwang, I. H., Devine, C. E., & Hopkins, D. L. (2003). The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. In Meat Science (Vol. 65, Issue 2, pp. 677–691). Elsevier BV. https://doi.org/10.1016/s0309-1740(02)00271-1 DOI: https://doi.org/10.1016/S0309-1740(02)00271-1
Alarcon-Rojo, A. D., Janacua, H., Rodriguez, J. C., Paniwnyk, L., & Mason, T. J. (2015). Power ultrasound in meat processing. In Meat Science (Vol. 107, pp. 86–93). Elsevier BV. https://doi.org/10.1016/j.meatsci.2015.04.015 DOI: https://doi.org/10.1016/j.meatsci.2015.04.015
Jayasooriya, S. D., Bhandari, B. R., Torley, P., & D'Arcy, B. R. (2004). Effect of High Power Ultrasound Waves on Properties of Meat: A Review. In International Journal of Food Properties (Vol. 7, Issue 2, pp. 301–319). Informa UK Limited. https://doi.org/10.1081/jfp-120030039 DOI: https://doi.org/10.1081/JFP-120030039
Gerelt, B., Ikeuchi, Y., & Suzuki, A. (2000). Meat tenderization by proteolytic enzymes after osmotic dehydration. In Meat Science (Vol. 56, Issue 3, pp. 311–318). Elsevier BV. https://doi.org/10.1016/s0309-1740(00)00060-7 DOI: https://doi.org/10.1016/S0309-1740(00)00060-7
Kvame, T., & Vangen, O. (2007). Selection for lean weight based on ultrasound and CT in a meat line of sheep. In Livestock Science (Vol. 106, Issues 2–3, pp. 232–242). Elsevier BV. https://doi.org/10.1016/j.livsci.2006.08.007 DOI: https://doi.org/10.1016/j.livsci.2006.08.007
Sirri, F., Castellini, C., Bianchi, M., Petracci, M., Meluzzi, A., & Franchini, A. (2011). Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. In Animal (Vol. 5, Issue 2, pp. 312–319). Elsevier BV. https://doi.org/10.1017/s175173111000176x DOI: https://doi.org/10.1017/S175173111000176X
Peña-Gonzalez, E., Alarcon-Rojo, A. D., Garcia-Galicia, I., Carrillo-Lopez, L., & Huerta-Jimenez, M. (2019). Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. In Ultrasonics Sonochemistry (Vol. 53, pp. 134–141). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2018.12.045 DOI: https://doi.org/10.1016/j.ultsonch.2018.12.045
Peña-González, E. M., Alarcón-Rojo, A. D., Rentería, A., García, I., Santellano, E., Quintero, A., & Luna, L. (2017). Quality and sensory profile of ultrasound-treated beef [JB]. Italian Journal of Food Science, 29(3). https://doi.org/10.14674/1120-1770/ijfs.v604
Chang, H.-J., Wang, Q., Tang, C.-H., & Zhou, G.-H. (2015). Effects of Ultrasound Treatment on Connective Tissue Collagen and Meat Quality of Beef Semitendinosus Muscle. In Journal of Food Quality (Vol. 38, Issue 4, pp. 256–267). Wiley. https://doi.org/10.1111/jfq.12141 DOI: https://doi.org/10.1111/jfq.12141
Stadnik, J., & Dolatowski, Z. J. (2011). Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). In European Food Research and Technology (Vol. 233, Issue 4, pp. 553–559). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-011-1550-5 DOI: https://doi.org/10.1007/s00217-011-1550-5
Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. In Foods (Vol. 7, Issue 10, p. 164). MDPI AG. https://doi.org/10.3390/foods7100164 DOI: https://doi.org/10.3390/foods7100164
Patist, A., & Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. In Innovative Food Science & Emerging Technologies (Vol. 9, Issue 2, pp. 147–154). Elsevier BV. https://doi.org/10.1016/j.ifset.2007.07.004 DOI: https://doi.org/10.1016/j.ifset.2007.07.004
Sikes, A. L., Mawson, R., Stark, J., & Warner, R. (2014). Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. In Ultrasonics Sonochemistry (Vol. 21, Issue 6, pp. 2138–2143). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2014.03.008 DOI: https://doi.org/10.1016/j.ultsonch.2014.03.008
Iztayev, A, Yakiyayeva, M, Kulazhanov, T, Kizatova, M, Maemerov, M, Stankevych, G, Toxanbayeva, B, & Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. In Acta Technica CSAV (Vol. 63, Issue 1B, 23 p.). Ceskoslovensk Akademie Ved.
Iztayev, A., Urazaliev, R., Yakiyayeva, M., Maemerov, M., Shaimerdenova, D., Iztayev, B., Toxanbayeva, B., & Dauletkeldі, Ye. (2018). The Investigation of The Impact of Dynamic Deterioration of Ozone on Grass Growth and the Consequence of Ion-Ozone Cavitation Treatment. In Journal of Advanced Research in Dynamical and Control Systems (vol. 10, Issue 13-SI, pp. 663–671). Institute of Advanced Scientific Research.
Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. In Ultrasonics Sonochemistry (Vol. 18, Issue 4, pp. 813–835). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2010.11.023 DOI: https://doi.org/10.1016/j.ultsonch.2010.11.023
Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. In Food Research International (Vol. 48, Issue 2, pp. 410–427). Elsevier BV. https://doi.org/10.1016/j.foodres.2012.05.004 DOI: https://doi.org/10.1016/j.foodres.2012.05.004
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.