Processing of beef rumen with ultrasonic waves

Authors

  • Gulmira Serikbayevna Kenenbai Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77023205856
  • Urishbai Chomanovich Chomanov Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77017884556
  • Bakytzhan Bolatovna Omirzhanova Kazakh Scientific Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+ 77781119415
  • Amina Nurlanovna Tatieva Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+77787930493
  • Rabiga Kassymbek Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+77787930493
  • Gulzhan Zhumaliyeva Kazakh Research Institute of Processing and Food Industry LLP, Laboratory of Technology for Processing and Storage of Animal Products, 238 Gagarin Ave., 050060, Almaty, Republic of Kazakhstan, Tel.:+77787930493

DOI:

https://doi.org/10.5219/1794

Keywords:

resource conservation, offal, beef rumen, ultrasound treatment, cutting efforts

Abstract

The article discusses the main trends in processing animal products, the development of technologies to improve their quality and technologies to preserve the quality indicators of the product over time. A review of the effects of ultrasound treatment on beef rumen is presented, and the main directions of ultrasound application are determined. The advantages of ultrasonic processing and its influence on the characteristics of raw meat were researched. The modes and parameters (frequency, intensity and duration) of ultrasound treatment of muscle tissue were established based on the results. This study evaluated the effect of ultrasound treatment on beef rumen's physical, microstructural and organoleptic characteristics. The physicochemical, mineral, microbiological, vitamin and amino acid composition of beef rumen and reticulum were also studied. Based on the results of the presented review, it can be concluded that the development of technologies for processing beef rumen with ultrasound is of potential interest. The optimal parameters are 400 and 600 W/m2, with a frequency of 40 kHz, for 50-60 minutes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Antipova, L. V. (2012). Fundamentals of rational use of secondary collagen-containing raw materials of the meat industry. Voronezh, VGTA (248 p.).

Patshina, M. V. (2013). Development of technology of cooked meat products using collagen semi-finished pork skin. [Doctoral dissertation, Kemerovo] (22 p.). KemTIPP. Available at: https://tekhnosfera.com/razrabotka-tehnologii-varenyh-myasnyh-produktov-s-ispolzovaniem-kollagenovogo-polufabrikata-iz-svinoy-shkurki

Uglov, B. A., Shelepov, B. G., Boroday, E. V., & Slepchuk, V. A. (2021). Prospects for using secondary resources of meat processing industries based on patent research. In Innovations and Food Safety (Issue 3, pp. 39–46). Federal State Educational Institution of Higher Education Novosibirsk State Agrarian University. https://doi.org/10.31677/2311-0651-2020-29-3-39-46 DOI: https://doi.org/10.31677/2311-0651-2020-29-3-39-46

Storublevtsev, S. A. (2009). Obtaining and application of functional collagen hydrolysate of connective tissues of farm animals. [Doctoral dissertation, Voronezh] (pp. 32–39). VGTA. Available at: https://tekhnosfera.com/poluchenie-i-primenenie-funktsionalnogo-gidrolizata-kollagena-soedinitelnyh-tkaney-selskohozyaystvennyh-zhivotnyh

Ünver, A. (2016). Applications of ultrasound in food processing. In Green Chemistry & Technology Letters (Vol. 2, Issue 3, pp. 121–126). GIAP Journals. https://doi.org/10.18510/gctl.2016.231 DOI: https://doi.org/10.18510/gctl.2016.231

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. In Ultrasonics Sonochemistry (Vol. 18, Issue 4, pp. 813–835). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2010.11.023

Terefe, N. S., Sikes, A. L., & Juliano, P. (2016). Ultrasound for Structural Modification of Food Products. In Innovative Food Processing Technologies (pp. 209–230). Elsevier. https://doi.org/10.1016/b978-0-08-100294-0.00008-0 DOI: https://doi.org/10.1016/B978-0-08-100294-0.00008-0

Kentish, S., & Feng, H. (2014). Applications of Power Ultrasound in Food Processing. In Annual Review of Food Science and Technology (Vol. 5, Issue 1, pp. 263–284). Annual Reviews. https://doi.org/10.1146/annurev-food-030212-182537 DOI: https://doi.org/10.1146/annurev-food-030212-182537

Nunes, J. L., Piquerez, M., Pujadas, L., Armstrong, E., Fernández, A., & Lecumberry, F. (2015). Beef quality parameters estimation using ultrasound and color images. In BMC Bioinformatics (Vol. 16, Issue S4). Springer Science and Business Media LLC. https://doi.org/10.1186/1471-2105-16-s4-s6 DOI: https://doi.org/10.1186/1471-2105-16-S4-S6

Fulladosa, E., De Prados, M., García-Perez, J.V., Benedito, J., Muñoz, I., Arnau, J., & Gou, P. (2013). Determination of dry-cured ham composition using X-ray absorption and ultrasound technologies, 59th International Congress of Meat Science and Technology, Izmir, Turkey (S7B-3).

GOST 33692-2015. (2015). Animal proteins are connective tissue. General specifications. Interstate standard. Moscow: Standartinform (6 p.) Available at: https://online.zakon.kz/Document/?doc_id=35626448&pos=2;-90#pos=2;-90

Grau, R., & Hamm, G. (1953). Eine Einfache Methode zur Bestimmung der Wasserbindung in Muskel. In Die Naturwissenschaften (Vol. 40, pp. 29–30). Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/BF00595734

Antipova, L.V., Glotova, I.A., Rogov I.A. (2004). Methods for the study of meat and meat products. Textbook. M.: Kolos (571 p.)

AOAC (2002). Official methods of analysis of association of official analytical chemists (17th ed.). Washington (AOAC, 1115 p.).

Caraveo, O., Alarcon-Rojo, A. D., Renteria, A., Santellano, E., & Paniwnyk, L. (2014). Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. In Journal of the Science of Food and Agriculture (Vol. 95, Issue 12, pp. 2487–2493). Wiley. https://doi.org/10.1002/jsfa.6979 DOI: https://doi.org/10.1002/jsfa.6979

Jayasooriya, S. D., Bhandari, B. R., Torley, P., & D'Arcy, B. R. (2004). Effect of High Power Ultrasound Waves on Properties of Meat: A Review. In International Journal of Food Properties (Vol. 7, Issue 2, pp. 301–319). Informa UK Limited. https://doi.org/10.1081/jfp-120030039

Hwang, I. H., & Thompson, J. M. (2001). The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. In Meat Science (Vol. 58, Issue 2, pp. 135–144). Elsevier BV. https://doi.org/10.1016/s0309-1740(00)00141-8 DOI: https://doi.org/10.1016/S0309-1740(00)00141-8

Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. In LWT - Food Science and Technology (Vol. 41, Issue 10, pp. 2151–2158). Elsevier BV. https://doi.org/10.1016/j.lwt.2007.12.003 DOI: https://doi.org/10.1016/j.lwt.2007.12.003

Hopkins, D. L., & Ferrier, G. R. (2000). The tenderness of lamb meat after low voltage stimulation under commercial conditions. In Asian Australasian Journal of Animal Sciences (Vol. B, pp. 356–357). Kisti.

Hopkins, D. L., & Thompson, J. M. (2001). Inhibition of protease activity part 1. The effect on tenderness and indicators of proteolysis in ovine muscle. In Meat Science (Vol. 59, pp. 175–185). Elsevier BV DOI: https://doi.org/10.1016/S0309-1740(01)00068-7

Hopkins, D. L., & Thompson, J. M. (2002). The relationship between post-mortem calcium concentration or pH and indicators of proteolysis in ovine muscle. In Meat Science (Vol. 61, Issue 4, pp. 411–414). Elsevier BV. https://doi.org/10.1016/s0309-1740(01)00213-3 DOI: https://doi.org/10.1016/S0309-1740(01)00213-3

Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V., & Wheeler, T. L. (2003). The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle. In Journal of Animal Science (Vol. 81, Issue 3, pp. 676–682). Oxford University Press (OUP). https://doi.org/10.2527/2003.813676x DOI: https://doi.org/10.2527/2003.813676x

May, S. G., Mies, W. L., Edwards, J. W., Harris, J. J., Morgan, J. B., Garrett, R. P., Williams, F. L., Wise, J. W., Cross, H. R., & Savell, J. W. (2000). Using live estimates and ultrasound measurements to predict beef carcass cutability. In Journal of Animal Science (Vol. 78, Issue 5, p. 1255). Oxford University Press (OUP). https://doi.org/10.2527/2000.7851255x DOI: https://doi.org/10.2527/2000.7851255x

Thériault, M., Pomar, C., & Castonguay, F. W. (2009). Accuracy of real-time ultrasound measurements of total tissue, fat, and muscle depths at different measuring sites in lamb1. In Journal of Animal Science (Vol. 87, Issue 5, pp. 1801–1813). Oxford University Press (OUP). https://doi.org/10.2527/jas.2008-1002 DOI: https://doi.org/10.2527/jas.2008-1002

Hwang, I. H., Devine, C. E., & Hopkins, D. L. (2003). The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. In Meat Science (Vol. 65, Issue 2, pp. 677–691). Elsevier BV. https://doi.org/10.1016/s0309-1740(02)00271-1 DOI: https://doi.org/10.1016/S0309-1740(02)00271-1

Alarcon-Rojo, A. D., Janacua, H., Rodriguez, J. C., Paniwnyk, L., & Mason, T. J. (2015). Power ultrasound in meat processing. In Meat Science (Vol. 107, pp. 86–93). Elsevier BV. https://doi.org/10.1016/j.meatsci.2015.04.015 DOI: https://doi.org/10.1016/j.meatsci.2015.04.015

Jayasooriya, S. D., Bhandari, B. R., Torley, P., & D'Arcy, B. R. (2004). Effect of High Power Ultrasound Waves on Properties of Meat: A Review. In International Journal of Food Properties (Vol. 7, Issue 2, pp. 301–319). Informa UK Limited. https://doi.org/10.1081/jfp-120030039 DOI: https://doi.org/10.1081/JFP-120030039

Gerelt, B., Ikeuchi, Y., & Suzuki, A. (2000). Meat tenderization by proteolytic enzymes after osmotic dehydration. In Meat Science (Vol. 56, Issue 3, pp. 311–318). Elsevier BV. https://doi.org/10.1016/s0309-1740(00)00060-7 DOI: https://doi.org/10.1016/S0309-1740(00)00060-7

Kvame, T., & Vangen, O. (2007). Selection for lean weight based on ultrasound and CT in a meat line of sheep. In Livestock Science (Vol. 106, Issues 2–3, pp. 232–242). Elsevier BV. https://doi.org/10.1016/j.livsci.2006.08.007 DOI: https://doi.org/10.1016/j.livsci.2006.08.007

Sirri, F., Castellini, C., Bianchi, M., Petracci, M., Meluzzi, A., & Franchini, A. (2011). Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. In Animal (Vol. 5, Issue 2, pp. 312–319). Elsevier BV. https://doi.org/10.1017/s175173111000176x DOI: https://doi.org/10.1017/S175173111000176X

Peña-Gonzalez, E., Alarcon-Rojo, A. D., Garcia-Galicia, I., Carrillo-Lopez, L., & Huerta-Jimenez, M. (2019). Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. In Ultrasonics Sonochemistry (Vol. 53, pp. 134–141). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2018.12.045 DOI: https://doi.org/10.1016/j.ultsonch.2018.12.045

Peña-González, E. M., Alarcón-Rojo, A. D., Rentería, A., García, I., Santellano, E., Quintero, A., & Luna, L. (2017). Quality and sensory profile of ultrasound-treated beef [JB]. Italian Journal of Food Science, 29(3). https://doi.org/10.14674/1120-1770/ijfs.v604

Chang, H.-J., Wang, Q., Tang, C.-H., & Zhou, G.-H. (2015). Effects of Ultrasound Treatment on Connective Tissue Collagen and Meat Quality of Beef Semitendinosus Muscle. In Journal of Food Quality (Vol. 38, Issue 4, pp. 256–267). Wiley. https://doi.org/10.1111/jfq.12141 DOI: https://doi.org/10.1111/jfq.12141

Stadnik, J., & Dolatowski, Z. J. (2011). Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). In European Food Research and Technology (Vol. 233, Issue 4, pp. 553–559). Springer Science and Business Media LLC. https://doi.org/10.1007/s00217-011-1550-5 DOI: https://doi.org/10.1007/s00217-011-1550-5

Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. In Foods (Vol. 7, Issue 10, p. 164). MDPI AG. https://doi.org/10.3390/foods7100164 DOI: https://doi.org/10.3390/foods7100164

Patist, A., & Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. In Innovative Food Science & Emerging Technologies (Vol. 9, Issue 2, pp. 147–154). Elsevier BV. https://doi.org/10.1016/j.ifset.2007.07.004 DOI: https://doi.org/10.1016/j.ifset.2007.07.004

Sikes, A. L., Mawson, R., Stark, J., & Warner, R. (2014). Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. In Ultrasonics Sonochemistry (Vol. 21, Issue 6, pp. 2138–2143). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2014.03.008 DOI: https://doi.org/10.1016/j.ultsonch.2014.03.008

Iztayev, A, Yakiyayeva, M, Kulazhanov, T, Kizatova, M, Maemerov, M, Stankevych, G, Toxanbayeva, B, & Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. In Acta Technica CSAV (Vol. 63, Issue 1B, 23 p.). Ceskoslovensk Akademie Ved.

Iztayev, A., Urazaliev, R., Yakiyayeva, M., Maemerov, M., Shaimerdenova, D., Iztayev, B., Toxanbayeva, B., & Dauletkeldі, Ye. (2018). The Investigation of The Impact of Dynamic Deterioration of Ozone on Grass Growth and the Consequence of Ion-Ozone Cavitation Treatment. In Journal of Advanced Research in Dynamical and Control Systems (vol. 10, Issue 13-SI, pp. 663–671). Institute of Advanced Scientific Research.

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. In Ultrasonics Sonochemistry (Vol. 18, Issue 4, pp. 813–835). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2010.11.023 DOI: https://doi.org/10.1016/j.ultsonch.2010.11.023

Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. In Food Research International (Vol. 48, Issue 2, pp. 410–427). Elsevier BV. https://doi.org/10.1016/j.foodres.2012.05.004 DOI: https://doi.org/10.1016/j.foodres.2012.05.004

Downloads

Published

2022-11-29

How to Cite

Kenenbai, G. S., Chomanov, U. C., Omirzhanova, B. B., Tatieva, A. N., Kassymbek, R., & Zhumaliyeva, G. (2022). Processing of beef rumen with ultrasonic waves. Potravinarstvo Slovak Journal of Food Sciences, 16, 810–823. https://doi.org/10.5219/1794