Manifestation of living and post-slaughter traits of productivity in inbred and outbred bull calves of Ukrainian meat cattle breed

Authors

  • Anatolii Ugnivenko National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies, Heroiv Oborony str., 12b, Kyiv, 03041, Ukraine, Tel.: +38(0972552246)
  • Dmytro Nosevych National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies, Polkovnika Potekhina, str.16, Kyiv, 03040, Ukraine https://orcid.org/0000-0003-2495-2084
  • Tatyana Antoniuk National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies, Heroiv Oborony str., 12b, Kyiv, 03041, Ukraine, Tel.: +38(0985884735)
  • Ivan Chumachenko National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Dairy and Beef Production Technology, Heroes of Defense Str., 15, 03041, Kyiv, Ukraine
  • Anastasiia Ivaniuta National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of technology of meat, fish and marine products, Polkovnika Potekhina Str., 16, Kyiv, 03040, Ukraine https://orcid.org/0000-0002-1770-5774
  • Nataliia Slobodyanyuk National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products Department of technology of meat, fish and marine products, Polkovnyka Potekhina, str. 16, Kyiv, 03040, Ukraine
  • Yuliya Kryzhova National University of Life and Environmental Sciences of Ukraine, Faculty of FoodTechnology and Quality Control of Agricultural Products, Department of technology of meat, fish and marine products, Polkovnika Potekhina, Str. 16, Kyiv, 03041, Ukraine https://orcid.org/0000-0003-1165-8898
  • Tatyana Rozbytska National University of Life and Environmental Sciences of Ukraine, Faculty of food technologies and quality management of products of agricultural products, Department of Standardization and certifying of agricultural products, Heroiv Oborony Str. 15, 03041, Kyiv, Ukraine, Tel.: +38(093)9219680 https://orcid.org/0000-0003-0098-927X
  • Mykola Gruntovskyi National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Technologies in Poultry, Pig and Sheep Breeding, Heroiv Oborony str., 12b, Kyiv, 03041, Ukraine, Tel.: +38 (0987691099) https://orcid.org/0000-0002-6969-2987
  • Yevheniia Marchyshyna National University of Life and Environmental Sciences of Ukraine, Mechanical and technological Faculty, Department of Occupational Safetyаnd Environmental Engineering, Heroyiv Oborony Str., 12, studying building No 11, Kyiv, 03041, Ukraine, Tel.:+38(098)344 48 37 https://orcid.org/0000-0001-8842-186X

DOI:

https://doi.org/10.5219/1769

Keywords:

inbreeding, outbreeding, meat productivity, bull calves, selection, "order" for sires

Abstract

Selection in meat cattle herds requires caution due to the manifestation of inbred depression in traits that affect the economics of this livestock industry. This paper analyses the productivity of inbred and outbred bull calves of the Ukrainian meat cattle breed and justifies methods of pair selection in purebred herds with natural pairing. In bull calves, the growth of animals and traits of their meat productivity after slaughter were considered. Inbreeding was determined based on their pedigree. Inbred animals tended to have a growth rate of 10.2% from birth to 8 months of age. Afterwards, their average daily gain in live weight decreases sharply compared to outbred peers, who grow faster over a more extended period. From 8 to 18 months of age, it is probably (p >0.95) higher by 27.3% compared to inbred animals. Inbred bull calves have higher variability (Cv,%) in average daily gains. This indicates different adaptations to the environment during the suckling period and after weaning. Outbred animals tend to gain 2.3% of body weight at 12 months, 4.7 at 15 months, and 10.3% at 18 months. Its variability with age decreases by 7.4 points in inbred bull calves and 0.4 points in outbred ones, from 8 to 18 months. The inbred animals spent 29.5% more feed per kg of gain (p >0.95) than the outbred ones. Inbred bull calves vs outbred ones at 15 and 18 months of age tend to improve the expression of meat forms by 1.3 and 2.7%. They are relatively shorter and have a more rounded barrel. As a result, they have a shorter period of rapid growth. With the small size of the Ukrainian meat cattle population, one of the most important problems is reducing genetic variation in beef productivity traits and manifesting inbred depression in them. In purebred commercial herds, the mating of close animals should be avoided. To do this, an "order" for bulls should be made, and pairs should be selected without using inbreeding at different grades. Thus, outbred bull calves will reach live weight more quickly, spending less feed per growth unit, and have better basic slaughter traits.

Downloads

Download data is not yet available.

References

Ugnivenko, A., Nosevich, D. & Koropets, L. (2008). Ukrainian meat breed of cattle. In Kyivska Pravda.

Ugnivenko, A. N. (2018). On the problem of using inbreeding in beef cattle breeding. In Ukrainian Journal of Ecology (Vol. 8, Issue 1, pp. 596–600). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/2018_254 DOI: https://doi.org/10.15421/2018_254

Palamarchuk, I., Mushtruk, M., Lypovy, I., Petrychenko, I., & Vlasenko, I. (2022). Justification of Vibroventrentic External Load During Mechanical Pressing of Glycerin-Containing Products. In Lecture Notes in Mechanical Engineering (pp. 208–217). Springer International Publishing. https://doi.org/10.1007/978-3-031-06044-1_20 DOI: https://doi.org/10.1007/978-3-031-06044-1_20

Mastrangelo, S., Tolone, M., Di Gerlando, R., Fontanesi, L., Sardina, M. T., & Portolano, B. (2016). Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. In Animal (Vol. 10, Issue 5, pp. 746–754). Elsevier BV. https://doi.org/10.1017/s1751731115002943 DOI: https://doi.org/10.1017/S1751731115002943

Zhao, G., Zhang, T., Liu, Y., Wang, Z., Xu, L., Zhu, B., Gao, X., Zhang, L., Gao, H., Liu, G. E., Li, J., & Xu, L. (2020). Genome-Wide Assessment of Runs of Homozygosity in Chinese Wagyu Beef Cattle. In Animals (Vol. 10, Issue 8, p. 1425). MDPI AG. https://doi.org/10.3390/ani10081425 DOI: https://doi.org/10.3390/ani10081425

Azcona, F., Sole, M., Dorado, J., Ross, P., Terán, E., & Demyda-Peyrás, S. (2019). 155 Whole genome association analysis suggests an influence of inbreeding on bull sperm morphometry. In Reproduction, Fertility and Development (Vol. 31, Issue 1, p. 202). CSIRO Publishing. https://doi.org/10.1071/rdv31n1ab155 DOI: https://doi.org/10.1071/RDv31n1Ab155

Dorado, J., Cid, R. M., Molina, A., Hidalgo, M., Ariza, J., Moreno-Millán, M., & Demyda-Peyrás, S. (2017). Effect of inbreeding depression on bull sperm quality and field fertility. In Reproduction, Fertility and Development (Vol. 29, Issue 4, p. 712). CSIRO Publishing. https://doi.org/10.1071/rd15324 DOI: https://doi.org/10.1071/RD15324

Bernardes, P. A., Grossi, D. A., Savegnago, R. P., Buzanskas, M. E., Ramos, S. B., Romanzini, E. P., Guidolin, D. G. F., Bezerra, L. A. F., Lôbo, R. B., & Munari, D. P. (2016). Population structure of Tabapuã beef cattle using pedigree analysis. In Livestock Science (Vol. 187, pp. 96–101). Elsevier BV. https://doi.org/10.1016/j.livsci.2016.03.002 DOI: https://doi.org/10.1016/j.livsci.2016.03.002

Smetanska, I., Tonkha, O., Patyka, T., Hunaefi, D., Mamdouh, D., Patyka, M., Bukin, A., Mushtruk, M., Slobodyanyuk, N., & Omelian, A. (2021). The influence of yeast extract and jasmonic acid on phenolic acids content of in vitro hairy root cultures of Orthosiphon aristatus. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 1–8). HACCP Consulting. https://doi.org/10.5219/1508 DOI: https://doi.org/10.5219/1508

Shanina, O., Galyasnyj, I., Gavrysh, T., Dugina, K., Sukhenko, Y., Sukhenko, V., Miedviedieva, N., Mushtruk, M., Rozbytska, T., & Slobodyanyuk, N. (2019). Development of gluten-free non-yeasted dough structure as factor of bread quality formation. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 13, Issue 1, pp. 971–983). HACCP Consulting. https://doi.org/10.5219/1201 DOI: https://doi.org/10.5219/1201

Randhawa, I. A. S., McGowan, M. R., Porto-Neto, L. R., Hayes, B. J., & Lyons, R. E. (2021). Comparison of Genetic Merit for Weight and Meat Traits between the Polled and Horned Cattle in Multiple Beef Breeds. In Animals (Vol. 11, Issue 3, p. 870). MDPI AG. https://doi.org/10.3390/ani11030870

Hidalgo, J., Cesarani, A., Garcia, A., Sumreddee, P., Larios, N., Mancin, E., García, J. G., Núñez, R., & Ramírez, R. (2021). Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico. In Animals (Vol. 11, Issue 2, p. 321). MDPI AG. https://doi.org/10.3390/ani11020321 DOI: https://doi.org/10.3390/ani11020321

Amaral, R., Malhado, C. H. M., Martins Filho, R., Malhado, A. C. M., Rezende, M. P. G., Ambrosini, D. P., & Carneiro, P. L. S. (2019). Inbreeding depression and genetic variability in nellore breed. In Archives of Veterinary Science (Vol. 24, Issue 3). Universidade Federal do Parana. https://doi.org/10.5380/avs.v24i3.62841 DOI: https://doi.org/10.5380/avs.v24i3.62841

Reverter, A., Porto-Neto, L. R., Fortes, M. R. S., Kasarapu, P., de Cara, M. A. R., Burrow, H. M., & Lehnert, S. A. (2017). Genomic inbreeding depression for climatic adaptation of tropical beef cattle. In Journal of Animal Science (Vol. 95, Issue 9, p. 3809). Oxford University Press (OUP). https://doi.org/10.2527/jas2017.1643 DOI: https://doi.org/10.2527/jas2017.1643

Sumreddee, P., Toghiani, S., Hay, E., Ling, A., Aggrey, S., & Rekaya, R. (2018). PSXIV-32 Inbreeding depression in a Hereford beef cattle population using the pedigree and genomic information. In Journal of Animal Science (Vol. 96, Issue suppl_3, pp. 141–141). Oxford University Press (OUP). https://doi.org/10.1093/jas/sky404.308 DOI: https://doi.org/10.1093/jas/sky404.308

Mushtruk, M., Vasyliv, V., Slobodaniuk, N., Mukoid, R., & Deviatko, O. (2020). Improvement of the Production Technology of Liquid Biofuel from Technical Fats and Oils. In Advances in Design, Simulation and Manufacturing III (pp. 377–386). Springer International Publishing. https://doi.org/10.1007/978-3-030-50491-5_36 DOI: https://doi.org/10.1007/978-3-030-50491-5_36

Sumreddee, P., Toghiani, S., Hay, E. H., Roberts, A., Agrrey, S. E., & Rekaya, R. (2018). Inbreeding depression in line 1 Hereford cattle population using pedigree and genomic information1. In Journal of Animal Science (Vol. 97, Issue 1, pp. 1–18). Oxford University Press (OUP). https://doi.org/10.1093/jas/sky385 DOI: https://doi.org/10.1093/jas/sky385

Zhao, X., Zhang, Z., Cui, Z., Manoli, T., Yan, H., Zhang, H., Shlapak, G., Menchynska, A., Ivaniuta, A., & Holembovska, N. (2022). Quality changes of sous-vide cooked and blue light sterilized Argentine squid (Illex argentinus). In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 175–186). HACCP Consulting. https://doi.org/10.5219/1731 DOI: https://doi.org/10.5219/1731

International Committee for Animal Recording (2018). ICAR Guidelines for Beef Cattle Production Recording. Section 3. Beef Cattle.

State standard of Ukraine. (2000). Meat industry. Livestock slaughter products. Terms and definitions (DSTU 3938-99).

State standard. (1985). Meat Cut beef for retail. ( GOST 7595-79).

Lykhach, V. Ya., Lykhach, A. V., Tribrat, R. O., & Faustov, R. V. (2020). The influence of individual breeding of youth pigs with various stress sensitivity on their productive qualities. In Animal Science and Food Technology (Vol. 11, Issue 1, pp. 43–55). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal2020.01.043 DOI: https://doi.org/10.31548/animal2020.01.043

Škrlep, M., Tomašević, I., Mörlein, D., Novaković, S., Egea, M., Garrido, M. D., Linares, M. B., Peñaranda, I., Aluwé, M., & Font-i-Furnols, M. (2020). The Use of Pork from Entire Male and Immunocastrated Pigs for Meat Products—An Overview with Recommendations. In Animals (Vol. 10, Issue 10, p. 1754). MDPI AG. https://doi.org/10.3390/ani10101754 DOI: https://doi.org/10.3390/ani10101754

Naserkheil, M., Lee, D.-H., Kong, H.-S., Seong, J., & Mehrban, H. (2021). Estimation of Genetic Parameters and Correlation between Yearling Ultrasound Measurements and Carcass Traits in Hanwoo Cattle. In Animals (Vol. 11, Issue 5, p. 1425). MDPI AG. https://doi.org/10.3390/ani11051425 DOI: https://doi.org/10.3390/ani11051425

Brzáková, M., Boskova, I., Vostry, L., Rychtarova, J., & Bucek, P. (2021). Impact of COVID-19 on animal production in the Czech Republic. In Animal Frontiers (Vol. 11, Issue 1, pp. 47–50). Oxford University Press (OUP). https://doi.org/10.1093/af/vfaa053 DOI: https://doi.org/10.1093/af/vfaa053

Nogalski, Z., Starczewski, M., Purwin, C., Pogorzelska-Przybyłek, P., Sobczuk-Szul, M., & Modzelewska-Kapituła, M. (2020). Carcass and Meat Quality Traits in Young Bulls Fed Virginia Fanpetals Silage. In Annals of Animal Science (Vol. 20, Issue 3, pp. 1127–1140). Walter de Gruyter GmbH. https://doi.org/10.2478/aoas-2020-0033 DOI: https://doi.org/10.2478/aoas-2020-0033

Randhawa, I. A. S., McGowan, M. R., Porto-Neto, L. R., Hayes, B. J., & Lyons, R. E. (2021). Comparison of Genetic Merit for Weight and Meat Traits between the Polled and Horned Cattle in Multiple Beef Breeds. In Animals (Vol. 11, Issue 3, p. 870). MDPI AG. https://doi.org/10.3390/ani11030870 DOI: https://doi.org/10.3390/ani11030870

Fernandes Júnior, G. A., Silva, D. A., Mota, L. F. M., de Melo, T. P., Fonseca, L. F. S., Silva, D. B. dos S., Carvalheiro, R., & Albuquerque, L. G. (2022). Sustainable Intensification of Beef Production in the Tropics: The Role of Genetically Improving Sexual Precocity of Heifers. In Animals (Vol. 12, Issue 2, p. 174). MDPI AG. https://doi.org/10.3390/ani12020174 DOI: https://doi.org/10.3390/ani12020174

Suсhenko, Y., Suсhenko, V., Mushtruk, M., Vasyliv, V., & Boyko, Y. (2017). Changing the quality of ground meat for sausage products in the process of grinding. In Eastern-European Journal of Enterprise Technologies (Vol. 4, Issue 11 (88), pp. 56–63). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2017.108876 DOI: https://doi.org/10.15587/1729-4061.2017.108876

An, B., Xu, L., Xia, J., Wang, X., Miao, J., Chang, T., Song, M., Ni, J., Xu, L., Zhang, L., Li, J., & Gao, H. (2020). Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. In BMC Genetics (Vol. 21, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12863-020-0837-6 DOI: https://doi.org/10.1186/s12863-020-0837-6

Doekes, H. P., Bijma, P., Veerkamp, R. F., de Jong, G., Wientjes, Y. C. J., & Windig, J. J. (2020). Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle. In Genetics Selection Evolution (Vol. 52, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12711-020-00583-1 DOI: https://doi.org/10.1186/s12711-020-00583-1

Bureš, D., & Bartoň, L. (2018). Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. In Livestock Science (Vol. 214, pp. 231–237). Elsevier BV. https://doi.org/10.1016/j.livsci.2018.06.017 DOI: https://doi.org/10.1016/j.livsci.2018.06.017

Cherednichenko, O., & Bal-Prylypko, L. (2020). Rationale and economic feasibility of improving the technology of long-term storage of meat products. In IOP Conference Series: Earth and Environmental Science (Vol. 548, Issue 2, p. 022053). IOP Publishing. https://doi.org/10.1088/1755-1315/548/2/022053 DOI: https://doi.org/10.1088/1755-1315/548/2/022053

Palamarchuk, I., Zozulyak, O., Mushtruk, M., Petrychenko, I., Slobodyanyuk, N., Domin, О., Udodov, S., Semenova, O., Karpovych, I., & Blishch, R. (2022). The intensification of dehydration process of pectin-containing raw materials. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 15–26). HACCP Consulting. https://doi.org/10.5219/1711 DOI: https://doi.org/10.5219/1711

Murphy, B., Kelly, A. K., & Prendiville, R. (2018). Alternative finishing strategies for Holstein-Friesian bulls slaughtered at 15 months of age. In Agricultural and Food Science (Vol. 27, Issue 1). Agricultural and Food Science. https://doi.org/10.23986/afsci.66719 DOI: https://doi.org/10.23986/afsci.66719

Cherednichenko, O., Bal-Prylypko, L., Paska, M., & Nikolaenko, M. (2021). Expediency of creation of technology of production of meat products of long term of storage of the combined structure. In IOP Conference Series: Earth and Environmental Science (Vol. 723, Issue 3, p. 032086). IOP Publishing. https://doi.org/10.1088/1755-1315/723/3/032086 DOI: https://doi.org/10.1088/1755-1315/723/3/032086

Yamada, T., Kamiya, M., & Higuchi, M. (2020). Fat depot‐specific effects of body fat distribution and adipocyte size on intramuscular fat accumulation in Wagyu cattle. In Animal Science Journal (Vol. 91, Issue 1). Wiley. https://doi.org/10.1111/asj.13449 DOI: https://doi.org/10.1111/asj.13449

Menchynska, A., Manoli, T., Tyshchenko, L., Pylypchuk, O., Ivanyuta, A., Holembovska, N., & Nikolaenko, M. (2021). Biological value and consumer properties of fish pastes. In Food Science and Technology (Vol. 15, Issue 3). Odessa National Academy of Food Technologies. https://doi.org/10.15673/fst.v15i3.2121 DOI: https://doi.org/10.15673/fst.v15i3.2121

Mushtruk, M., Deviatko, O., Ulianko, S., Kanivets, N., & Mushtruk, N. (2021). An Agro-Industrial Complex Fat-Containing Wastes Synthesis Technology in Ecological Biofuel. In Lecture Notes in Mechanical Engineering (pp. 361–370). Springer International Publishing. https://doi.org/10.1007/978-3-030-77823-1_36 DOI: https://doi.org/10.1007/978-3-030-77823-1_36

Reverter, A., Porto-Neto, L. R., Fortes, M. R. S., Kasarapu, P., de Cara, M. A. R., Burrow, H. M., & Lehnert, S. A. (2017). Genomic inbreeding depression for climatic adaptation of tropical beef cattle1. In Journal of Animal Science (Vol. 95, Issue 9, pp. 3809–3821). Oxford University Press (OUP). https://doi.org/10.2527/jas.2017.1643 DOI: https://doi.org/10.2527/jas.2017.1643

Mushtruk, M., Bal-Prylypko, L., Slobodyanyuk, N., Boyko, Y., & Nikolaienko, M. (2022). Design of Reactors with Mechanical Mixers in Biodiesel Production. In Lecture Notes in Mechanical Engineering (pp. 197–207). Springer International Publishing. https://doi.org/10.1007/978-3-031-06044-1_19 DOI: https://doi.org/10.1007/978-3-031-06044-1_19

Kondratiuk, V., Slobodyanyuk, N., & Ivaniuta, A. (2021). Effect of feeding conditions on the quality traits of rainbow trout. Acta fytotechn zootechn (Vol. 24, Issue 3, pp. 256–264). Elsevier BV.

Downloads

Published

2022-07-06

How to Cite

Ugnivenko, A., Nosevych, D., Antoniuk, T., Chumachenko, I., Ivaniuta, A., Slobodyanyuk, N., Kryzhova, Y., Rozbytska, T., Gruntovskyi, M., & Marchyshyna, Y. (2022). Manifestation of living and post-slaughter traits of productivity in inbred and outbred bull calves of Ukrainian meat cattle breed. Potravinarstvo Slovak Journal of Food Sciences, 16, 356–366. https://doi.org/10.5219/1769

Most read articles by the same author(s)

<< < 1 2