Evaluation of vapor-phase antifungal activities of selected plant essential oils against fungal strains growing on bread food model


  • Veronika Valková AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; Faculty of Horticulture and Landscape Engineering, Department of Fruit Sciences, Viticulture and Enology, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel. +42137641 4928 https://orcid.org/0000-0001-7048-6323
  • Hana Ďúranová AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel. +421376414975 https://orcid.org/0000-0002-7274-6210
  • Lucia Galovičová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Sciences, Viticulture and Enology, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel. +421907260116 https://orcid.org/0000-0002-1203-4115
  • Eva Ivanišová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel. +421376414421
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Sciences, Viticulture and Enology, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; University of Rzeszow, Institute of Food Technology and Nutrition, Department of Bioenergy, Food Technology and Microbiology, Zelwerowicza St. 4, 35601 Rzeszow, Poland, Tel. +421376414715 https://orcid.org/0000-0002-4460-0222




essential oil, Penicillium sp., antioxidant activity, antifungal activity, bakery product


The current study aimed to investigate antifungal activities of two commercially available essential oils (EOs), specifically Tea tree oil (Melaleuca alternifolia; TTEO) and St. John's wort oil (Hypericum perforatum; HPEO) against three Penicillium (P.) species: P. citrinum, P. expansum, and P. crustosum in in situ conditions. For this purpose, EOs were applied in the vapor phase to determine the growth inhibition of fungi artificially inoculated on sliced bread. Changes in colony growth rate were evaluated as markers for the mycelial growth inhibition (MGI) effect of the EOs. The antioxidant activities of the EOs were evaluated using the DPPH method. The moisture content (MC) and water activity (aw) of bread as a substrate for fungal growth were also measured. From the DPPH assay, we have found that both EOs (TTEO, HPEO) exhibited strong antioxidant activity (64.94 ±7.34%; 70.36 ±1.57%, respectively). The values for bread MC and aw were 43.01 ±0.341% and 0.947 ±0.006, respectively. Our results suggest that HPEO is the only weak inhibitor of P. citrinum and P. crustosum colony growths. Also, the highest concentrations of TTEO display only the weak capability of mycelial growth inhibition of P. citrinum and P. crustosum. By contrast, the colony growth of P. expansum was enhanced by both EOs at all levels used. In conclusion, the application of both EOs in the vapor phase against selected Penicillium species seems not to be a promising alternative to chemical inhibitors used for bread preservation.


Download data is not yet available.


Metrics Loading ...


Abdullah, N., Nawawi, A., Othman, I. 2000. Fungal spoilage of starch-based foods in relation to its water activity (aw). Journal of Stored Products Research, vol. 36, no. 1, p. 47-54. https://doi.org/10.1016/S0022-474X(99)00026-0 DOI: https://doi.org/10.1016/S0022-474X(99)00026-0

Ahmed, M., Pickova, J., Ahmad, T., Liaquat, M., Farid, A., Jahangir, M. 2016. Oxidation of Lipids in Foods. Sarhad Journal of Agriculture, vol. 32, no. 3, p. 230-238. https://doi.org/10.17582/journal.sja/2016. DOI: https://doi.org/10.17582/journal.sja/2016.

Al-Muhtaseb, A. H., McMinn, W. A. M., Magee, T. R. A. 2002. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, vol. 80, no. 2, p. 118-128. https://doi.org/10.1205/09603080252938753 DOI: https://doi.org/10.1205/09603080252938753

Aman, M., Rai, V. R. 2015. Antifungal activity of fungicides and plant extracts against yellow sigatoka disease causing Mycosphaerella musicola. Current Research in Environmental and Applied Mycology, vol. 5, no. 3, p. 277-284. https://doi.org/10.5943/cream/5/3/11 DOI: https://doi.org/10.5943/cream/5/3/11

Balaguer, M. P., Lopez-Carballo, G., Catala, R., Gavara, R., Hernandez-Munoz, P. 2013. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International Journal of Food Microbiology, vol. 166, no. 3, p. 369-377. https://doi.org/10.1016/j.ijfoodmicro.2013.08.012 DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.08.012

Barnes, J., Anderson, L. A., Phillipson, J. D. 2001. St John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. Journal of Pharmacy and Pharmacology, vol. 53, no. 5, p. 583-600. https://doi.org/10.1211/0022357011775910 DOI: https://doi.org/10.1211/0022357011775910

Belz, M. C. E., Mairinger, R., Zannini, E., Ryan, L. A. M., Cashman, K. D., Arendt, E. K. 2012. The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Applied Microbiology and Biotechnology, vol. 96, no. 2, p. 493-501. https://doi.org/10.1007/s00253-012-4052-x DOI: https://doi.org/10.1007/s00253-012-4052-x

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, vol. 94, no. 3, p. 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Burt, S. A., Reinders, R. D. 2003. Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Letters in Applied Microbiology, vol. 36, no. 3, p. 162-167. https://doi.org/10.1046/j.1472-765X.2003.01285.x DOI: https://doi.org/10.1046/j.1472-765X.2003.01285.x

Chidi, F., Bouhoudan, A., Khaddor, M. 2020. Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. Journal of King Saud University - Science, vol. 32, no. 3, p. 2041-2045. https://doi.org/10.1016/j.jksus.2020.02.012 DOI: https://doi.org/10.1016/j.jksus.2020.02.012

Chouhan, S., Sharma, K., Guleria, S. 2017. Antimicrobial Activity of Some Essential Oils - Present Status and Future Perspectives. Medicines, vol. 4, no. 3, 21 p. https://doi.org/10.3390/medicines4030058 DOI: https://doi.org/10.3390/medicines4030058

Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R., Wyllie, S. G. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, vol. 88, no. 1, p. 170-175. https://doi.org/10.1046/j.1365-2672.2000.00943.x DOI: https://doi.org/10.1046/j.1365-2672.2000.00943.x

Cox, S. D., Mann, C. M., Markham, J. L., Gustafson, J. E., Warmington, J. R., Wyllie, S. G. 2001. Determining the Antimicrobial Actions of Tea Tree Oil. Molecules, vol. 6, no. 2, p. 87-91. https://doi.org/10.3390/60100087 DOI: https://doi.org/10.3390/60100087

Crockett, S. L. 2010. Essential Oil and Volatile Components of the Genus Hypericum (Hypericaceae). Natural Product Communications, vol. 5, no. 9, p. 1493-1506. https://doi.org/10.1177/1934578X1000500926 DOI: https://doi.org/10.1177/1934578X1000500926

Davey, K. R. 1989. A predictive model for combined temperature and water activity on microbial growth during the growth phase. Journal of Applied Bacteriology, vol. 67, no. 5, p. 483-488. https://doi.org/10.1111/j.1365-2672.1989.tb02519.x DOI: https://doi.org/10.1111/j.1365-2672.1989.tb02519.x

de Groot, A. C., Schmidt, E. 2016. Tea tree oil: contact allergy and chemical composition. Contact Dermatitis, vol. 75, no. 3, p. 129-143. https://doi.org/10.1111/cod.12591 DOI: https://doi.org/10.1111/cod.12591

Donnelly, J. K., Robinson, D. S. 1995. Invited Review Free Radicals in Foods. Free Radical Research, vol. 22, no. 2, p. 147-176. https://doi.org/10.3109/10715769509147536 DOI: https://doi.org/10.3109/10715769509147536

Fadel, H. H. M., El-Ghorab, A. H., Hussein, A. M. S., El-Massry, K. F., Lotfy, S. N., Ahmed, M. Y. S., Soliman, T. N. 2020. Correlation between chemical composition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils. Arabian Journal of Chemistry, vol. 13, no. 8, p. 6815-6827. https://doi.org/10.1016/j.arabjc.2020.06.034 DOI: https://doi.org/10.1016/j.arabjc.2020.06.034

Grafakou, M. E., Diamanti, A., Antaloudaki, E., Kypriotakis, Z., Ćirić, A., Soković, M., Skaltsa, H. 2020. Chemical Composition and Antimicrobial Activity of the Essential Oils of Three Closely Related Hypericum Species Growing Wild on the Island of Crete, Greece. Applied Sciences, vol. 10, no. 8, 12 p. https://doi.org/10.3390/app10082823 DOI: https://doi.org/10.3390/app10082823

Irshad, M., Subhani, M. A., Ali, S., Hussain, A. 2020. Biological Importance of Essential Oils. In El-Shemy, H. Essential Oils. Oils of Nature. London, UK : IntechOpen. ISBN: 978-1-83880-851-8. https://doi.org/10.5772/intechopen.87198 DOI: https://doi.org/10.5772/intechopen.87198

Jürgenliemk, G., Nahrstedt, A. 2002. Phenolic Compounds from Hypericum perforatum. Planta Medica, vol. 68, no. 1, p. 88-91. https://doi.org/10.1055/s-2002-20053 DOI: https://doi.org/10.1055/s-2002-20053

Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., Tvrdá, E. 2020a. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods, vol. 9, no. 3, 19 p. https://doi.org/10.3390/foods9030282 DOI: https://doi.org/10.3390/foods9030282

Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. L., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Prokeinová, R. B., Vukovic, N. 2020b. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, vol. 25, no. 17, 21 p. https://doi.org/10.3390/molecules25173956 DOI: https://doi.org/10.3390/molecules25173956

Kalemba, D., Kunicka, A. 2003. Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, vol. 10, no 10, p. 813-829. https://doi.org/10.2174/0929867033457719 DOI: https://doi.org/10.2174/0929867033457719

Kim, H. J., Chen, F., Wu, C., Wang, X., Chung, H. Y., Jin, Z. 2004. Evaluation of Antioxidant Activity of Australian Tea Tree (Melaleuca alternifolia) Oil and Its Components. Journal of Agricultural and Food Chemistry, vol. 52, no. 10, p. 2849-2854. https://doi.org/10.1021/jf035377d DOI: https://doi.org/10.1021/jf035377d

Kitanov, G. M. 2001. Hypericin and pseudohypericin in some Hypericum species. Biochemical Systematics and Ecology, vol. 29, no. 2, p. 171-178. https://doi.org/10.1016/S0305-1978(00)00032-6 DOI: https://doi.org/10.1016/S0305-1978(00)00032-6

Krisch, J., Tserennadmid, R., Vágvölgyi, C. 2011. Essential oils against yeasts and moulds causing food spoilage. Science against microbial pathogens: Communicating current research and technological advances. Formatex Research Center, Badajoz, Spain, p. 1135-1142.

Labuza, T. P., McNally, L., Gallagher, D., Hawkes, J., Hurtado, F. 1972. Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of Food Science, vol. 37, no. 1, p. 154-159. https://doi.org/10.1111/j.1365-2621.1972.tb03408.x DOI: https://doi.org/10.1111/j.1365-2621.1972.tb03408.x

Laird, K., Phillips, C. 2012. Vapour phase: a potential future use for essential oils as antimicrobials? Letters in Applied Microbiology, vol. 54, no. 3, p. 169-174. https://doi.org/10.1111/j.1472-765X.2011.03190.x DOI: https://doi.org/10.1111/j.1472-765X.2011.03190.x

Legan, J. D. 1993. Mould spoilage of bread: the problem and some solutions. International Biodeterioration & Biodegradation, vol. 32, no. 1-3, p. 33-53. https://doi.org/10.1016/0964-8305(93)90038-4 DOI: https://doi.org/10.1016/0964-8305(93)90038-4

Li, Y., Shao, X., Xu, J., Wei, Y., Xu, F., Wang, H. 2017. Effects and possible mechanism of tea tree oil against Botrytis cinerea and Penicillium expansum in vitro and in vivo test. Canadian Journal of Microbiology, vol. 63, no. 3, p. 219-227. https://doi.org/10.1139/cjm-2016-0553 DOI: https://doi.org/10.1139/cjm-2016-0553

Lis‐Balchin, M., Deans, S. G., Eaglesham, E. 1998. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour and Fragrance Journal, vol. 13, no. 2, p. 98-104. https://doi.org/10.1002/(SICI)1099-1026(199803/04)13:2<98::AID-FFJ705>3.0.CO;2-B DOI: https://doi.org/10.1002/(SICI)1099-1026(199803/04)13:2<98::AID-FFJ705>3.0.CO;2-B

Luz, C., Calpe, J., Saladino, F., Luciano, F. B., Fernandez‐Franzón, M., Mañes, J., Meca, G. 2018. Antimicrobial packaging based on ɛ‐polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. Journal of Food Processing and Preservation, vol. 42, no. 1, 6 p. https://doi.org/10.1111/jfpp.13370 DOI: https://doi.org/10.1111/jfpp.13370

Lyles, J. T., Kim, A., Nelson, K., Bullard-Roberts, A. L., Hajdari, A., Mustafa, B., Quave, C. L. 2017. The Chemical and Antibacterial Evaluation of St. John's Wort Oil Macerates Used in Kosovar Traditional Medicine. Frontiers in Microbiology, vol. 8, 19 p. https://doi.org/10.3389/fmicb.2017.01639 DOI: https://doi.org/10.3389/fmicb.2017.01639

Mathis, C., Ourisson, G. 1964. Étude chimio-taxonomique du genre Hypericum: II. Identification de constituants de diverses huiles essentielles d'Hypericum (Chemotaxonomic study of the genus Hypericum: II. Identification of the constituents of various essential oils of Hypericum). Phytochemistry, vol. 3, no. 1, p. 115-131. (In French) https://doi.org/10.1016/S0031-9422(00)84003-0 DOI: https://doi.org/10.1016/S0031-9422(00)84003-0

Milosevic, T., Solujic, S., Sukdolak, S. 2007. In Vitro Study of Ethanolic Extract of Hypericum perforatum L. on Growth and Sporulation of Some Bacteria and Fungi. Turkish Journal of Biology, vol. 31, no. 4, p. 237-241.

Omarova, M. A., Artamonova, N. A. 1999. Classes and fatty-acid composition of lipids from Hypericum perforatum. Chemistry of Natural Compounds, vol. 35, no. 6, p. 684-685. https://doi.org/10.1007/BF02236306 DOI: https://doi.org/10.1007/BF02236306

Orčić, D. Z., Mimica-Dukić, N. M., Francišković, M. M., Petrović, S. S., Jovin, E. Đ. 2011. Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chemistry Central Journal, vol. 5, no. 1, 8 p. https://doi.org/10.1186/1752-153X-5-34 DOI: https://doi.org/10.1186/1752-153X-5-34

Orhan, I. E., Kartal, M. 2015. LC-DAD-MS-Assisted Quantification of Marker Compounds in Hypericum perforatum L. (St. John’s Wort) and its Antioxidant Activity. Turkish Journal of Pharmaceutical Sciences, vol. 12, no. 3, p. 279-286. https://doi.org/10.5505/tjps.2015.47965 DOI: https://doi.org/10.5505/tjps.2015.47965

Passarinho, A. T. P., Dias, N. F., Camilloto, G. P., Cruz, R. S., Otoni, C. G., Moraes, A. R. F., Soares, N. D. F. F. 2014. Sliced Bread Preservation through Oregano Essential Oil‐Containing Sachet. Journal of Food Process Engineering, vol. 37, no. 1, p. 53-62. https://doi.org/10.1111/jfpe.12059 DOI: https://doi.org/10.1111/jfpe.12059

Patel, Y. J. K., Smith, M. D. P., de Belleroche, J., Latchman, D. 2005. Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Molecular Brain Research, vol. 134, no. 2, p. 256-274. https://doi.org/10.1016/j.molbrainres.2004.10.028 DOI: https://doi.org/10.1016/j.molbrainres.2004.10.028

Pirbalouti, A. G., Samani, M. R., Hashemi, M., Zeinali, H. 2014. Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regulation, vol. 72, no. 3, p. 289-301. https://doi.org/10.1007/s10725-013-9860-1 DOI: https://doi.org/10.1007/s10725-013-9860-1

Puvača, N., Čabarkapa, I., Bursić, V., Petrović, A., Aćimović, M. 2018. Antimicrobial, antioxidant and acaricidal properties of tea tree (Melaleuca alternifolia). Journal of Agronomy, Technology and Engineering Management, vol. 1, no. 1, p. 29-38.

Rajkapoor, B., Burkan, Z. E., Senthilkumar, R. 2010. Oxidants and human diseases: role of antioxidant medicinal plants-a review. Pharmacology online, vol. 1, p. 1117-1131.

Rančić, A., Soković, M., Vukojević, J., Simić, A., Marin, P., Duletić-Laušević, S., Djoković, D. 2005. Chemical Composition and Antimicrobial Activities of Essential Oils of Myrrhis odorata (L.) Scop, Hypericum perforatum L and Helichrysum arenarium (L.) Moench. Journal of Essential Oil Research, vol. 17, no. 3, p. 341-345. https://doi.org/10.1080/10412905.2005.9698925 DOI: https://doi.org/10.1080/10412905.2005.9698925

Ravindran, R., Jaiswal, A. K. 2016. Exploitation of Food Industry Waste for High-Value Products. Trends in Biotechnology, vol. 34, no. 1, p. 58-69. https://doi.org/10.1016/j.tibtech.2015.10.008 DOI: https://doi.org/10.1016/j.tibtech.2015.10.008

Rogawansamy, S., Gaskin, S., Taylor, M., Pisaniello, D. 2015. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments. International Journal of Environmental Research and Public Health, vol. 12, no. 6, p. 6319-6332. https://doi.org/10.3390/ijerph120606319 DOI: https://doi.org/10.3390/ijerph120606319

Roos, Y. H., Jouppila, K., Söderholm, E. S. 1999. Crystallization of amorphous food components and polymers. Water Management in the Design and Distribution of Quality Foods, p. 429-452.

Sánchez‐Moreno, C., Larrauri, J. A., Saura‐Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Schwob, I., Bessière, J. M., Viano, J. 2002. Composition of the essential oils of Hypericum perforatum L. from southeastern France. Comptes Rendus Biologies, vol. 325, no. 7, p. 781-785. https://doi.org/10.1016/S1631-0691(02)01489-0 DOI: https://doi.org/10.1016/S1631-0691(02)01489-0

Sparenberg, B. 1993. MAO-inhibierende Eigenschaften von Hypericuminhaltsstoffen und Untersuchungen zur Analytik und Isolierung von Xanthonen aus Hypericum perforatum L. (MAO-inhibiting properties of hypericumin ingredients and studies on the analysis and isolation of xanthones from Hypericum perforatum). Dissertation thesis. (In German)

Talibi, I., Askarne, L., Boubaker, H., Boudyach, E. H., Msanda, F., Saadi, B., Aoumar, A. A. B. 2012. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop Protection, vol. 35, p. 41-46. https://doi.org/10.1016/j.cropro.2011.12.016 DOI: https://doi.org/10.1016/j.cropro.2011.12.016

Vermeulen, A., Marvig, C. L., Daelman, J., Xhaferi, R., Nielsen, D. S., Devlieghere, F. 2015. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: The effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Food Microbiology, vol. 45, p. 119-125. https://doi.org/10.1016/j.fm.2014.01.003 DOI: https://doi.org/10.1016/j.fm.2014.01.003

Verotta, L., Appendino, G., Jakupovic, J., Bombardelli, E. 2000. Hyperforin Analogues from St. John's Wort (Hypericum perforatum). Journal of Natural Products, vol. 63, no. 3, p. 412-415. https://doi.org/10.1021/np9903752 DOI: https://doi.org/10.1021/np9903752

Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., Szumny, A. 2019. Essential Oils as Antimicrobial Agents - Myth or Real Alternative? Molecules, vol. 24, no. 11, 21 p. https://doi.org/10.3390/molecules24112130 DOI: https://doi.org/10.3390/molecules24112130

Wu, F., Jin, Y., Xu, X., Yang, N. 2017. Electrofluidic pretreatment for enhancing essential oil extraction from citrus fruit peel waste. Journal of Cleaner Production, vol. 159, p. 85-94. https://doi.org/10.1016/j.jclepro.2017.05.010 DOI: https://doi.org/10.1016/j.jclepro.2017.05.010

Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., Takeda, Y., Takaishi, Y. 1995. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. Journal of Ethnopharmacology, vol. 46, no. 3, p. 133-152. https://doi.org/10.1016/0378-8741(95)01241-5 DOI: https://doi.org/10.1016/0378-8741(95)01241-5

Yu, D., Wang, J., Shao, X., Xu, F., Wang, H. 2015. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. Journal of Applied Microbiology, vol. 119, no. 5, p. 1253-1262. https://doi.org/10.1111/jam.12939 DOI: https://doi.org/10.1111/jam.12939

Zhang, X., Guo, Y., Guo, L., Jiang, H., Ji, Q. 2018. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil. BioMed Research International, vol. 2018, 8 p. https://doi.org/10.1155/2018/2396109 DOI: https://doi.org/10.1155/2018/2396109



How to Cite

Valková, V., Ďúranová, H., Galovičová, L., Ivanišová, E., & Kačániová, M. (2021). Evaluation of vapor-phase antifungal activities of selected plant essential oils against fungal strains growing on bread food model. Potravinarstvo Slovak Journal of Food Sciences, 15, 210–217. https://doi.org/10.5219/1483

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>