Adaptation of two-dimensional electrophoresis for muscle tissue analysis
DOI:
https://doi.org/10.5219/1380Keywords:
two-dimensional electrophoresis, muscle protein, isoelectric focusing, meatAbstract
It is important to understand the molecular mechanisms that take place in muscle tissues and to predict meat quality characteristics. One of the most popular methods is two-dimensional electrophoresis, which allows us to visualize, share and identify different molecules, including meat proteins. However, the standard conditions of this method are not universal for all types of raw material, so the authors suggest a new variation of two-dimensional electrophoresis for muscle tissue analysis. Samples were tested by the classical version of isoelectric focusing (cathode buffer in the top and anode buffer in the bottom chamber of the electrophoresis cell) and its variation (anode buffer in the top and cathode buffer in the bottom chamber of the electrophoresis cell). Next, extruded gels were incubated in two different buffer systems: the first was equilibration buffer I (6 M urea, 20% w/v glycerol, 2% w/v SDS and 1% w/v Ditiothreitol in 375 mM Tris-HCl buffer, pH 8.8) followed by equilibration buffer II (6 M urea, 20% w/v glycerol, 2% w/v SDS and 4% w/v iodoacetamide in 375 mM Tris-HCl buffer pH 8.8 and the second, buffer А, consisting of 5 M urea, 2% w/v SDS, 5% v/v mercaptoethanol, 62.5 mM Tris-HCl buffer, pH 6.8 and 0.01% w/v bromophenol blue. Electrophoretic studies of muscle tissue revealed the best protein separation after changing the direction of the current (authors' variation), while no differences were detected after changing incubation buffers.
Downloads
References
Bendixen, E. 2005. The use of proteomics in meat science. Meat Science, vol. 71, no. 1, p. 138-149. https://doi.org/10.1016/j.meatsci.2005.03.013
Bendixen, E., Taylor, R., Hollung, K., Hildrum, K. I., Picard, B., Bouley, J. 2005. Proteomics, an approach towards understanding the biology of meat quality. Indicators of Milk and Beef Quality (ed. JF Hocquette and S Gigli), vol. 112, p. 81-94.
Cao, C., Xiao, Z., Ge, C., Wu, Y. 2020. Application and research progress of proteomics in chicken meat quality and identification: a review. Food Reviews International, 23 p. https://doi.org/10.1080/87559129.2020.1733594
Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., Kotenkova, E. A. 2017. Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 539-543. https://doi.org/10.5219/590
Colangeli, M., Giardinà, C., Giberti, C., Vernia, C. 2018. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. Physical Review E, vol. 97, no. 3. https://doi.org/10.1103/PhysRevE.97.030103
D´Alessandro, A., Marrocco, C., Zolla, V., D´Andrea, M., Zolla, L. 2011. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: metabolomics and proteomics intertwined. Journal of Proteomics, vol. 75, no. 2, p. 610-627. https://doi.org/10.1016/j.jprot.2011.08.024
Davoli, R., Bigi, D., Fontanesi, L., Zambonelli, P., Yerle, M., Zijlstra, C., Bosma, A. A., Robic, A., Russo, V. 2000. Mapping of 14 expressed sequence tags (ESTs) from porcine skeletal muscle by somatic cell hybrid analysis. Animal Genetics, vol. 31, no. 6, p. 400-403. https://doi.org/10.1046/j.1365-2052.2000.00687.x
Di Luca, A., Hamill, R. M., Mullen, A. M., Slavov, N., Elia, G. 2016. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate. PLOS ONE, vol. 11, no 3, p. e0150605. https://doi.org/10.1371/journal.pone.0150605
Drousiotis, K., Koutalianos, D., Baumann, C. G., Bullard, B. 2020. Tropomyosin as a Stretch Sensor in the Troponin Bridges of Insect Flight Muscle. Biophysical Journal, vol. 118, no. 3, p. 495a. https://doi.org/10.1016/j.bpj.2019.11.2738
Grove, H., Hollung, K., Uhlen, A. K., Martens, H., Faergestad, E. M. 2006. Challenges related to analysis of protein spot volumes from two-dimensional gel electrophoresis as revealed by replicate gels. Journal of Proteome Research, vol. 5, no. 12, p. 3399-3410. https://doi.org/10.1021/pr0603250
Han, X., Xiong, Y., Zhao, C., Xie, S., Li, C., Li, X., Liu, X., Li, K., Zhao, S., Ruan, J. 2019. Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes, vol. 10, no 9, 11 p. https://doi.org/10.3390/genes10090660
Hirano, H. 1982. Varietal differences of leaf protein profiles in mulberry. Phytochemistry, vol. 21, no. 7, p. 1513-1518. https://doi.org/10.1016/S0031-9422(82)85008-5
Hollung, K., Veiseth, E., Jia, X., Færgestad, E. M., Hildrum, K. I. 2007. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Science, vol. 77, no. 1, p. 97-104. https://doi.org/10.1016/j.meatsci.2007.03.018
Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., Hirano, H. 2003. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, vol. 409, no. 2, p. 341-348. https://doi.org/10.1016/S0003-9861(02)00639-2
Kovaleva, M., Kovalev, L., Lisitskaya, K., Eremina, L., Ivanov, A., Krakhmaleva, I., Sadykhov, E., Shishkin, S. 2013. Muscle organs proteomics: multy-level database. FEBS Journal, vol. 280, Special Issue: SI Supplement: 1, p. 488.
Kovalyov, L. I., Kovalyova, M. A., Kovalyov, P. L., Serebryakova, M. V., Moshkovskii, S. A., Shishkin, S. S. 2006. Polymorphism of delta3,5-delta2,4-dienoyl-coenzyme A isomerase (the ECH1 gene product protein) in human striated muscle tissue. Biochemistry (Moscow), vol. 71, no. 4, p. 448-453. https://doi.org/10.1134/S0006297906040146
Lee, P. Y., Saraygord-Afshari, N., Low, T. Y. 2020. The evolution of two-dimensional gel electrophoresis- from proteomics to emerging alternative applications. Journal of Chromatography A, vol. 1615, 41 p. https://doi.org/10.1016/j.chroma.2019.460763
Matsumoto, H., Haniu, H., Kurien, B. T., Komori, N. 2019. Two-Dimensional Gel Electrophoresis by Glass Tube-Based IEF and SDS-PAGE. In Kurien, B., Scofield, R. Electrophoretic Separation of Proteins. New York, NY : Humana Press, p. 107-113. https://doi.org/10.1007/978-1-4939-8793-1_11
Montowska, M., Pospiech, E. 2007. Species identification of meat by electrophoretic methods. Acta Scientiarum Polonorum Technologia Alimentaria, vol. 6, no. 1, p. 5-16.
Montowska, M., Pospiech, E. 2012. Myosin light chain isoforms retain their species-specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics, vol. 12, no. 18, p. 2879-2889. https://doi.org/10.1002/pmic.201200043
Mora, L., Calvo, L., Escudero, E., Toldrá, F. 2016. Differences in pig genotypes influence the generation of peptides in dry-cured ham processing. Food Research International, vol. 86, p. 74-82. https://doi.org/10.1016/j.foodres.2016.04.023
Naveena, B. M., Jagadeesh, D. S., Kamuni, V., Muthukumar, M., Kulkarni, V. V., Kiran, M., Rapole, S. 2017. In-gel and OFFGEL-based proteomic approach for authentication of meat species from minced meat and meat products. Journal of the Science of Food and Agriculture, vol. 98, no. 3, p. 1188-1196. https://doi.org/10.1002/jsfa.8572
Nolan, A. N., Mead, R. J., Maker, G., Bringans, S., Chapman, B., Speers, S. J. 2019. Examination of the temporal variation of peptide content in decomposition fluid under controlled conditions using pigs as human substitutes. Forensic science international, vol. 298, p. 161-168. https://doi.org/10.1016/j.forsciint.2019.02.048
O'Donovan, C., Martin, M. J., Gattiker, A., Gasteiger, E., Bairoch, A., Apweiler, R. 2002. High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Briefings in Bioinformatics, vol. 3, no. 3, p. 275-284. https://doi.org/10.1093/bib/3.3.275
O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, vol. 250, no 10, p. 4007-4021.
Paredi, G., Mori, F., Mozzarelli, A. 2018. Proteomics of Meat Products. In de Almeida, A., Eckersall, D., Miller, I. Proteomics in Domestic Animals: from Farm to Systems Biology. Cham, Switzerland : Springer, 485 p. ISBN 978-3-319-69682-9. https://doi.org/10.1007/978-3-319-69682-9_15
Peng, J., Gygi, S. P. 2001. Proteomics: the move to mixtures. Journal of Mass Spectrometry, vol. 36, no. 10, p. 1083-1091. https://doi.org/10.1002/jms.229
Peng, Y., Chen, X., Zhang, H., Xu, Q., Hacker, T. A., Ge, Y. 2013. Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. Journal of Proteome Research, vol. 12, no. 1, p. 187-198. https://doi.org/10.1021/pr301054n
Persike, D. S., Marques-Carneiro, J. E., de Lima Stein, M. L., Targas Yacubian, E. M., Centeno, R., Canzian, M., de Silva Fernandes, M. J. 2018. Altered Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. Pharmaceuticals, vol. 11, no. 4, 17 p. https://doi.org/10.3390/ph11040095
Ros, A., Faupel, M., Mees, H., van Oostrum, J., Ferrigno, R., Reymond, F., Michel, P., Rossier, J. S., Girault, H. H. 2002. Protein purification by offgel electrophoresis. Proteomics, vol. 2, no. 2, p. 151-156. https://doi.org/10.1002/1615-9861(200202)2:2<151::AID-PROT151>3.0.CO;2-9
Soares, R., Franco, C., Pires, E., Ventosa, M., Palhinhas, R., Koci, K., de Almeida, A. M., Varela Coelho, A. 2012. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. Journal of Proteomics, vol. 75, no. 14, p. 4190-4206. https://doi.org/10.1016/j.jprot.2012.04.009
Suman, S. P., Rentfrow, G., Nair, M. N., Joseph, P. 2014. 2013 EARLY CAREER ACHIEVEMENT AWARD—Proteomics of muscle-and species-specificity in meat color stability. Journal of Animal Science, vol. 92, no. 3, p. 875-882. https://doi.org/10.2527/jas.2013-7277
Vasilevskaya, E. R., Akhremko, A. G. 2019. Proteomic study of pig’s spleen. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 314-317. https://doi.org/10.5219/1093
Zamaratskaia, G., Li, S. 2017. Proteomics in meat science—current status and future perspective. Theory and Practice of Meat Processing, vol. 2, no. 1, p. 18-26. https://doi.org/10.21323/2414-438X-2017-2-1-18-26
Zvereva, E. A., Kovalev, L. I., Ivanov, A. V., Kovaleva, M. A., Zherdev, A. V., Shishkin, S. S., Lisitsyn, A. B., Chernukha, I. M., Dzantiev, B. B. 2015. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, vol. 105, p. 46-52. https://doi.org/10.1016/j.meatsci.2015.03.001
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).