Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products

Authors

  • Irina Mikhailovna Chernukha The V. M. Gorbatov All-Russian Meat Research Institute, Experimental-clinical research laboratory of bioactive substances of animal origin, 109316, Talalikhina st., 26, Moscow
  • Liliya Vyacheslavovna Fedulova The V.M. Gorbatov All-Russian Meat Research Institute, Experimental-clinical research laboratory of bioactive substances of animal origin, 109316, Talalikhina st., 26, Moscow
  • Ekaterina Romanovna Vasilevskaya The V.M. Gorbatov All-Russian Meat Research Institute, Experimental-clinical research laboratory of bioactive substances of animal origin, 109316, Talalikhina st., 26, Moscow
  • Elena Alexandrovna Kotenkova The V.M. Gorbatov All-Russian Meat Research Institute, Experimental-clinical research laboratory of bioactive substances of animal origin, 109316, Talalikhina st., 26, Moscow

DOI:

https://doi.org/10.5219/590

Keywords:

immunocorrection, adaptogen, deuterium depleted water, peptide profole, amino acid

Abstract

Water with modified isotopic composition (D/H = 40 ppm) as a solubilizing agent for biologically active substances extraction from immune organs Sus Scrofa increases protein yield in thymus to 20%, in spleen up to 38%, mesenteric lymph nodes up to 35% in comparison with distilled water (D/H = 150 ppm). It was found a significant amount of neurotransmitter amino acids, such as aspartic and glutamic acids, glycine (thymus - 10.5; 13.7; 7.6%; spleen - 12.2; 10.7; 7.8% lymph nodes - 11.0; 13.3; 11.1%, respectively) having the immunological and adaptogenic activity, in extracts of Sus scrofa immunocompetent organs (thymus, spleen, mesenteric lymph nodes). Application of water with modified isotopic composition as solubilizing agent (D / H = 40 ppm) for extraction of immunocompetent organs' biologically active compounds led to increased amino acid content, including hydrophilic amino acids, in thymus extracts - up to 22%, in spleen extracts - up to 15% , in lymph nodes exctracts - up to 8%, in comparison to distilled water (D / H = 150 ppm). Peptide profile analysis revealed positive effect of water (D/H = 40 ppm) on a quality protein content extracts in molecular weight range from 10 to 20 kDa and from 30 to 45 kDa and peptide composition (2 kDa), at the same time quantitative content of compounds adaptogenic and immunocorrective action increased. Reducing of deuterium content in the solubilizing agent enhances quantitative amino acid content, i.e. extraction in an aqueous- salt solution based on deuterium depleted water of animal tissues with a high content of amino acids with hydrophilic radicals proceeded more completely.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bondarenko, E. M., Bezborodov, N. V. 2009. Application of a timogena immunomodulator for treatment of newborn calves suffering functional dyspepsia. Milk and meat cattle, vol. 2, p. 24-26.

Carlet, J., Ben, А. Н. A., Chalfin, A. 2004. Epidemiology and control of antibiotic resistance in the intensive care unit. Current Opinion in Infectious Disease, vol. 17, no. 3, p. 231-236. DOI: https://doi.org/10.1097/01.qco.0000136927.29802.68

Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., Ertikeeva, E. A., Ahremko, A. G. 2015. Compounds of antimicrobial activity in the animals mucous membranes (Soedineniya antimikrobnogo dejstviya v slizistyh obolochkah zhivotnyh). Vse o myase, vol. 5, p. 32-35.

DePaolo, R. W., Abadie, V., Tang, F., Fehlner-Peach, H., Hall, J. A. 2011. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature, vol. 471, no. 7337, p. 220-224. https://doi.org/10.1038/nature09849 PMid:21307853 DOI: https://doi.org/10.1038/nature09849

Dzhimak, S. S., Barishev, M. G., Basov, A. A., Timakov, A. A. 2014. Influence of deuterium depleted water on freeze dried tissue isotopic composition and morphofunctional body performance in rats of different generations. Biophysics, vol. 59, no. 4, p. 614-619. https://doi.org/10.1134/S0006350914040101 DOI: https://doi.org/10.1134/S0006350914040101

Gao, J., Li, Y., Yan, H. 1999. NMR solution structure of domain 1 of human annexin I shows an autonomous folding unit. The Journal of Biological Chemistry, vol. 274, no. 5, p. 2971-2977. https://doi.org/10.1074/jbc.274.5.2971 PMid:9915835 DOI: https://doi.org/10.1074/jbc.274.5.2971

Hawkey, P. M. 1998. The origins and molecular basis of antibiotic resistance. The BMJ, vol. 317, p. 657-660. https://doi.org/10.1136/bmj.317.7159.657 PMid:9727999 DOI: https://doi.org/10.1136/bmj.317.7159.657

Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochemical Journal, vol. 374, p. 1-20. https://doi.org/10.1042/bj20030407 PMid:12773095 DOI: https://doi.org/10.1042/bj20030407

Huang, W. C., Havel, J. J., Zhau, H. E., Qian, W. P., Lue, H. W. 2008. β2-Microglobulin Signaling Blockade Inhibited Androgen Receptor Axis and Caused Apoptosis in Human Prostate Cancer Cells. Clinical Cancer Research, vol. 14, no. 17, p. 5341-5347. https://doi.org/10.1158/1078-0432.CCR-08-0793 PMid:18765525 DOI: https://doi.org/10.1158/1078-0432.CCR-08-0793

Kajla, M. K., Shi, L., Li, B., Luckhart, S., Li, J. 2011. New Role for an Old Antimicrobial: Lysozyme c-1 Can Function to Protect Malaria Parasites in Anopheles Mosquitoes. PLOS ONE, vol. 6, no. 5, p. e19649. https://doi.org/10.1371/journal.pone.0019649 PMid:21573077 DOI: https://doi.org/10.1371/journal.pone.0019649

Khaitov, R. M. 1993.Vaccines Based on Synthetic Polyions and Peptides. Annals of the New York Academy of Sciences. Immunomodulating Drugs, vol. 685, p. 788-802. DOI: https://doi.org/10.1111/j.1749-6632.1993.tb35945.x

Kim, J., Jung, Y. 2015. Potential role of thymosin Beta 4 in liver fibrosis. International Journal of Molecular Science, vol. 16, no. 5, p. 16-21. https://doi.org/10.3390/ijms160510624 PMid:26006229 DOI: https://doi.org/10.3390/ijms160510624

Kokryakov, V. N. 1999. Biology of antibiotics of animal origin. St. Petersburg, Russia : Nauka. 18-142 p. PMid:10417180

Koopmann, J. O., Albring, J., Hüter, E. 2010. Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity, vol. 13, no. 1, p. 117-127. https://doi.org/10.1016/S1074-7613(00)00013-3 DOI: https://doi.org/10.1016/S1074-7613(00)00013-3

Lebedeva, S. N. Jamsaranova, S. D. 2004. Efficiency of peptide's biocorrector in nutritional regulation secondary immunodeficiency. Successes contemporary science, vol. 4, p. 128.

Liao, W., Lin, J. X., Leonard, W. J. 2011. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current Opinion in Immunology, vol. 23, no. 5, p. 598-604. https://doi.org/10.1016/j.coi.2011.08.003 PMid:21889323 DOI: https://doi.org/10.1016/j.coi.2011.08.003

Matveev, Y. A. 2001. Development of the process for and study of properties of an immunomodulator of the reindeer thymus : dissertation theses. Shchyolkovo, Russia. 136 p.

O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, vol. 250, no. 10, p. 4007-4021. PMid:236308 DOI: https://doi.org/10.1016/S0021-9258(19)41496-8

Perron, G. G., Inglis, R. F., Pleuni, S. P., Cobey, S. 2015. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evolutionary Applications, vol. 8, no. 3, p. 211-222. https://doi.org/10.1111/eva.12254 PMid:25861380 DOI: https://doi.org/10.1111/eva.12254

Pozdeev, O. K. 2004. Medical Microbiology: Textbook. 2nd ed. Moscow, Russia : GEOTAR-Media, p. 245-310.

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heuer, O. E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J. M., Segovia, C., Sigauque, B., Tacconelli, E., Wellington, E., Vila, J. 2015. The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections, vol. 6, 26-29. https://doi.org/10.1016/j.nmni.2015.02.007 PMid:26029375 DOI: https://doi.org/10.1016/j.nmni.2015.02.007

Sokolov, A. Y. 2015 Novye tendencii v racionalnom ispolzovanii syrya zhivotnogo proiskhozhdeniya. Myasnye tekhnologii, vol. 7, no. 151, p. 6-10.

Vasilevskaya, E. R., Fedulova, L. V. 2015. Animal raw materials as a source of natural regulators of immunity. Actual Biotechnology, vol. 3, p. 97-99.

Vladimirov, L. N. 2001. Development of technology for the production of biologically active compounds from reindeer endocrine glands: tutorial. Yakutsk, Russia. 106 p.

Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. Journal of Clinical Investigation, vol. 116, no. 5, p. 1310-1316. https://doi.org/10.1172/JCI21404 PMid:16670770 DOI: https://doi.org/10.1172/JCI21404

Downloads

Published

2017-10-11

How to Cite

Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., & Kotenkova, E. A. (2017). Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 539–543. https://doi.org/10.5219/590