Proteomic study of pig’s spleen


  • Ekaterina Romanovna Vasilevskaya V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia
  • Anastasia Gennadievna Akhremko V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +79152379497



spleen, two-dimensional electrophoresis, pork, proteomic


This work is devoted to pig spleen proteome study. Spleens were taken from Duroc pigs (females, 145 - 160 days old) and typical two-dimensional electrophoregrams were obtained. On proteomic maps after visualization and image analysis there were detected 600 fractions, including organ-specific proteins - 3 62 fractions. Among the identified constitutive fractions, the highest expression was observed (Vol spots more than 3.0E + 07) four protein spots S1, S9, S12 and S21, which are supposedly Annexin A1 (MW 38.76 kDa), Ectonucleoside triphosphate diphosphohydrolase 1 (MW 57.75 kDa) Pro-cathepsin H CD59 (MW 37.45 kDa) and glycoprotein (MW 13.79 kDa), respectively. Obtained electrophoregrams analysis using information resources made it possible to identify different active compounds in spleen with various functions, mainly immunoregulatory - glycoprotein CD59 (Mm 13.79 kDa) and ATP-dependent RNA helicase (Mm 107.58 kDa); the intensely expressed LIM-domain of the actin-binding protein (Mm 83.99 kDa). The results obtained are a prospect for immunomodulating biologic development based on animal raw materials for farm animals.


Download data is not yet available.


Metrics Loading ...


D'acquisto, F., Perretti, M., Flower, R. J. 2008. Annexin‐A1: a pivotal regulator of the innate and adaptive immune systems. British journal of pharmacology, vol. 155, no. 2, p. 152-169. DOI:

Gladue, D. P., Baker-Bransetter, R., Holinka, L. G., Fernandez-Sainz, I. J., O’Donnell, V., Fletcher, P., Zhiqiang Lu, Borca, M. V. 2014. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system. PLoS One, vol. 9, no. 1, p. e85324. DOI:

Hirano, H. 1982. Varietal differences of leaf protein profiles in mulberry. Phytochemistry, vol. 21, no. 7, p. 1513-1518. DOI:

Huang, J., Zhang, J., Lei, T., Chen, X., Zhang, Y., Zhou, L., Yu, A., Chen, Z., Zhou, R., Yang, Z. 2010. Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis. BMB reports, vol. 43, no. 7, p. 491-498. DOI:

Chen, X., Wang, X., Li, Z., Kong, L., Liu, G., Fu, J., Wang, A. 2012. Molecular cloning, tissue expression and protein structure prediction of the porcine 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Gene, vol. 495, no. 2, p. 170-177. DOI:

Chernukha, I. M., Fedulova, L. V., Kotenkova, E. A., Shishkin, S. S., Kovalyov, L. I., Mashentseva, N. G., Klabukova, D. L. 2016. Influence of heat treatment on tissue specific proteins in the cardiac muscle and aorta sus scrofa. Russian Journal of Biopharmaceuticals, vol. 8, no. 6, p. 38-44.

Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., Kotenkova, E. A. 2017. Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products . Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 539-543. DOI:

Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., Hirano, H. 2003. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, vol. 409, no. 2, p. 341-348. DOI:

Kotenkova, E. A., Lukinova, E. A., Fedulova, L. V. 2017. Antimicrobial compounds of porcine mucosa. In IOP Conference Series: Earth and Environmental Science. vol. 85, no. 1, p. 012068. DOI:

Lemmens, R., Vanduffel, L., Kittel, A., Beaudoin, A. R., Benrezzak, O., Sévigny, J. 2000. Distribution, cloning, and characterization of porcine nucleoside triphosphate diphosphohydrolase‐1. European Journal of Biochemistry, vol. 267, no. 13, p. 4106-4114. DOI:

Maher, S. E., Pflugh, D. L., Larsen, N. J., Rothschild, M. F., Bothwell, A. L. 1998. Structure/function characterization of porcine CD59: expression, chromosomal mapping, complement-inhibition, and costimulatory activity. Transplantation, vol. 66, no. 8, p. 1094-110. DOI:

Mora, L., Gallego, M., Toldrá, F. 2018. New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, vol 22, p. 22-27. DOI:

Ruiz‐Cortés, Z. T., Men, T., Palin, M. F., Downey, B. R., Lacroix, D. A., Murphy, B. D. 2000. Porcine leptin receptor: molecular structure and expression in the ovary. Molecular Reproduction and Development, vol. 56, no. 4, p. 465-474.<465::AID-MRD4>3.0.CO;2-Q DOI:<465::AID-MRD4>3.0.CO;2-Q

Swiss-Prot database. 2002. [online] s.a. [cit. 2019-01-18] Available at:

Wang, H., Wang, H., Zhu, Z., Yang, S., Feng, S., Li, K. 2007. Characterization of porcine EPLIN gene revealed distinct expression patterns for the two isoforms. Animal biotechnology, vol. 18, no. 2, p. 101-108. DOI:

Xie, L., Liu, M., Fang, L., Su, X., Cai, K., Wang, D., Chen, H. Xiao, S. 2010. Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING). Developmental & Comparative Immunology, vol. 34, no. 8, p. 847-854. DOI:

Yang, W., Diehl, J. R., Roudebush, W. E. 2003. Organization of Porcine Platelet‐Activating Factor Receptor Gene. Animal biotechnology, vol. 14, no. 2, p. 177-181. DOI:

Yang, W., Diehl, J. R., Yerle, M., Ford, J. J., Christenson, R. K., Roudebush, W. E., Plummer, W. E. 2003. Chromosomal location, structure, and temporal expression of the platelet‐activating factor receptor (PAFr) gene in porcine endometrium and embryos relative to estrogen receptor α gene expression. Molecular Reproduction and Development, vol. 64, no. 1, p. 4-12. DOI:

Yim, D., Jie, H. B., Lanier, L. L., Kim, Y. B. 2000. Molecular cloning, gene structure, and expression pattern of pig immunoreceptor DAP12. Immunogenetics, vol. 51, no. 6, p. 436-442. DOI:

Zhang, X., Wang, C., Schook, L. B., Hawken, R. J., Rutherford, M. S. 2000. An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microbial pathogenesis, vol. 28, no. 5, p. 267-278. DOI:



How to Cite

Vasilevskaya, E. R., & Akhremko, A. G. (2019). Proteomic study of pig’s spleen. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 314–317.