Occurrence of resistance to antibiotics therapy in coagulase-positive and coagulase-negative Staphylococci isolated from sheep´s milk in holding in Slovakia
DOI:
https://doi.org/10.5219/1333Keywords:
Sheep milk, coagulase-positive staphylococci, coagulase-negative staphylococci, antibiotics resistance, mastitisAbstract
The occurrence of bacteria Staphylococcus spp. was examined in a total of 3466 individuals and in 12 pool milk samples from 2017 to 2019. The experiment was carried out in two herds of the breed of sheep, Improved Valaska, in the Slovakia region. Eleven species of the genus Staphylococcus spp. (n = 431) were isolated and taxonomically identified. From the coagulase-positive staphylococci (CPS), S. aureus was isolated during the reporting period, however, most often in the third year (50). The incidence of S. intermedius and S. hyicus were irregular. The incidence of S. schleiferi was highest at the end of the follow-up duration. From the coagulase-negative staphylococci (CNS) (n = 158), were isolated
S. epidermidis present in 20.4% (88) and S. chromogenes 11.4 % (49), S. caprae, S. xylosus, and other species rarely occurred. S. aureus (n = 133) showed maximum resistance to erythromycin 12.0%, novobiocin 10.5%, and neomycin 9.0%. The incidence of intermedial susceptibility was observed predominantly to a penicillin (16 strains), novobiocin (11 strains), erythromycin (14 strains), oxacillin, and cloxacillin (12 strains), neomycin (11 strains), and lincomycin (9 strains). Observantly, S. schleiferi (n = 101) showed the highest resistance to novobiocin (5.9%) and erythromycin (5.0%), however, a high incidence of intermediate susceptibility to erythromycin (9), amoxicillin, novobiocin (8), ampicillin, lincomycin (7), penicillin, methicilin and cefoperazone (5 strains) can be identified as adverse. The incidence of resistant and intermediate sensitive test strains S. aureus and S. schleiferi, especially for erythromycin, novobiocin, and neomycin, which are often used to treat udder inflammation in sheep, is relatively adverse.
Downloads
Metrics
References
Becker, K., Heilmann, C., Peters, G. 2014. Coagulase-Negative Staphylococci. Clinical Microbiology Reviews, vol. 27, no. 4, p. 870-926. https://doi.org/10.1128/CMR.00109-13 DOI: https://doi.org/10.1128/CMR.00109-13
Beuron, D. C., Cortinhas, C. S., Botaro, B. G., Macedo, S. N., Gonçalves, J. L., Brito, M. A. V. P., Santos, M. V. 2014. Risk factors associated with the antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis. Pesquisa Veterinária Brasileira, vol. 34, no. 10, p. 947-952. https://doi.org/10.1590/S0100-736X2014001000004 DOI: https://doi.org/10.1590/S0100-736X2014001000004
Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samanta, I., Mahanti, A., Das, A. K., Das, G., Dandapat, P., Bandyopadhyay, S. 2016. The first report on Vancomycin-resistant Staphylococcus aureus in bovine and Caprine Milk. Microbial Drug Resistance, vol. 22, no. 8, p. 675-681. https://doi.org/10.1089/mdr.2015.0330 DOI: https://doi.org/10.1089/mdr.2015.0330
Ceniti, C., Britti, D., Santoro, A. M. L., Musarella, R., Ciambrone, L., Casalinuovo, F., Costanzo, N. 2017. Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Italian Journal of Food. Safety, vol. 6, no. 2, p. 84-87. https://doi.org/10.4081/ijfs.2017.6612 DOI: https://doi.org/10.4081/ijfs.2017.6612
Ergün, Y., Aslantaş, Ö., Doğruer, G., Kireçci, E., Saribay, M. K., Ateş, T. C., Ülkü, A., Demir, C. 2009. Prevalence and etiology of subclinical mastitis in Awashi dairy ewes in southern Turkey. The Turkish Journal of Veterinary and Animal Sciences, vol. 6, no. 33, p. 477-483. https://doi.org/10.3906/vet-0803-23 DOI: https://doi.org/10.3906/vet-0803-23
Ergün, Y., Aslantas, O., Kirecci, E., Ozturk, F., Ceylan, A, Boyar, Y. 2012. Antimicrobial susceptibility, presence of resistance genes and biofilm formation in coagulase negative staphylococci isolated from subclinical sheep mastitis. Kafkas Universitesi Veteriner Fakultesi Dergisi, vol. 18, no. 3, p. 449-456. https://doi.org/10.9775/kvfd.2011.5643 DOI: https://doi.org/10.9775/kvfd.2011.5643
EUCAST. 2014. European Society of Clinical Microbiology and Infectious Diseases Disk Diffusion Method for Antimicrobial Susceptibility Testing – Version 5.0. Available at: http://www.eucast.org
Fthenakis, G. C. 1994. Prevalence and aetiology of subclinical mastitis in ewes of southern Greece. Small Ruminant Research, vol. 13, no. 3, p. 293-300. https://doi.org/10.1016/0921-4488(94)90078-7 DOI: https://doi.org/10.1016/0921-4488(94)90078-7
Gomes, F., Henriques, M. 2015. Control of bovine mastitis: old and recent therapeutic approaches, Current Microbiology, vol. 72, p. 377-382. https://doi.org/10.1007/s00284-015-0958-8 DOI: https://doi.org/10.1007/s00284-015-0958-8
Hendriksen, R. S., Mevius, D. J., Schroeter, A., Teale, C., Meunier, D., Butaye, P., Franco, A., Utinane, A., Amado, A., Moreno, M., Greko, C., Stärk, K., Berghold, C., Myllyniemi, A. L., Wasyl, D., Sunde, M., Aarestrup, F. M. 2008. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004. Acta Veterinaria Scandinavica, vol. 50, 10 p. https://doi.org/10.1186/1751-0147-50-28 DOI: https://doi.org/10.1186/1751-0147-50-28
Chambers, H. F. 2001. Antimicrobial agents: General considerations. In Harmam, J. G., Limbird, L. E., Gilman, A. G. The Pharmacological Basis of Therapeutics. 10th edn. New York, USA : McGraw-Hill Medical, p. 1143-1170.
Kabrt, M. 2013. Aplicated statistics: Test chí-square independence in contingence table. Available at: http://www.milankabrt.cz/testNezavislosti/
Legarra, A., Ramón, M., Ugarte, E., Pérez-Guzmán, M. D., Arranz, J. 2007. Economic weights of somatic cells core in dairy sheep. Animal, vol. 1, no. 2, p. 205-212. https://doi.org/10.1017/S1751731107657826 DOI: https://doi.org/10.1017/S1751731107657826
Leitner, G., Silanikove, N., Merin, U. 2008. Estimate of milk and curd yield loss of sheep and goats with intramammary infection and its relation to somatic cell count. Small Ruminant Research, vol. 74, no. 1-3, p. 221-225. https://doi.org/10.1016/j.smallrumres.2007.02.009 DOI: https://doi.org/10.1016/j.smallrumres.2007.02.009
Martins, K. B., Faccioli, P. Y., Bonesso, M. F., Fernandes, S., Oliveira, A. A., Dantas, A., Zafalon, L. F., Cunha, M. D. R. S. 2017. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. Journal of Dairy Science, vol. 100, no. 3, p. 2184-2195. https://doi.org/10.3168/jds.2016-11583 DOI: https://doi.org/10.3168/jds.2016-11583
Minst, K., Märtlbauer, E., Miller, T., Meyer, C. 2012. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents, Journal of Dairy Sciences, vol. 95, no. 12, p. 6957-6962. https://doi.org/10.3168/jds.2012-5852 DOI: https://doi.org/10.3168/jds.2012-5852
Moniri, R., Dastegholi, K., Akramian, A. 2007. Increasing Resistant coagulase negative staphylococci in Bovine Clinical Mastitis. Pakistan Journal of Biological Sciences, no. 10, vol. 15, p. 2465-2469. https://doi.org/10.3923/pjbs.2007.2465.2469 DOI: https://doi.org/10.3923/pjbs.2007.2465.2469
Mørk, T., Waage, S., Tollersrud, T., Kvitle, B., Sviland, S. 2007. Clinical mastitis in ewes, bacteriology, epidemiology and clinical features. Acta Veterinaria Scandinavica, vol. 49, 8 p. https://doi.org/10.1186/1751-0147-49-23 DOI: https://doi.org/10.1186/1751-0147-49-23
Onni, T., Sanna, G., Larsen, J., Tola, S., 2011. Antimicrobial susceptibilities and population structure of Staphylococcus epidermidis associated with ovine mastitis. Veterinary Microbiology, vol. 148, no. 1, p. 45-50. https://doi.org/10.1016/j.vetmic.2010.07.024 DOI: https://doi.org/10.1016/j.vetmic.2010.07.024
Pieterse, R., Todorov, S. D. 2010. Bacteriocins – exploring alternatives to antibiotics in mastitis treatment. Brazilian Journal of Microbiology, vol. 41, p. 542-562. https://doi.org/10.1590/S1517-83822010000300003 DOI: https://doi.org/10.1590/S1517-83822010000300003
Riggio, V., Portolano, B. 2015. Genetic selection for reduced Somatic Cell Counts in sheep milk: A review. Small Ruminant Research, vol. 126, no. 1, p. 33-42. https://doi.org/10.1016/j.smallrumres.2015.01.020 DOI: https://doi.org/10.1016/j.smallrumres.2015.01.020
Rupp, R., Bergonier, D., Dion, S., Hygonenq, M. C., Aurel, M. R., Robert-Granié, C., Foucras, G. 2009. Response to somatic cell count-based selection for mastitis resistance in a divergent selection experiment in sheep. Journal of Dairy Science, vol. 92, no. 3, p. 1203-1219. https://doi.org/10.3168/jds.2008-1435 DOI: https://doi.org/10.3168/jds.2008-1435
Rupp, R., Boichard, D. 2003. Genetics of resistance to mastitis in dairy cattle. Veterinary Research, vol. 34, p. 671-688. https://doi.org/10.1051/vetres:2003020 DOI: https://doi.org/10.1051/vetres:2003020
Rupp, R., Foucras, G. 2010. Breeding of disease resistance in farm animals. p. 183-212. ISBN 9781845935559. https://doi.org/10.1079/9781845935559.0183 DOI: https://doi.org/10.1079/9781845935559.0183
Schmidt, T., Kock, M. M., Ehlers, M. M. 2015. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. Journal of Dairy Science, vol. 98, no. 9, p. 6256-6269. https://doi.org/10.3168/jds.2015-9715 DOI: https://doi.org/10.3168/jds.2015-9715
Schwarz, S., Silley, P., Simjee, S., Woodford, N., van Duijkeren, E., Johnson, A. P., Gaastra, W. 2010. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. Journal of Antimicrobial Chemotherapy, vol. 65, no. 4, p. 601-604. https://doi.org/10.1093/jac/dkq037 DOI: https://doi.org/10.1093/jac/dkq037
Smith, K., Hogan, J. 2001. The world of mastitis 2nd International Symposium on mastitis and milk quality. Canada: Vancouver.
Taponen, S., Simojoki, H., Haveri, M., Larsen, H. D., Pyörälä, S. 2006. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Veterinary Microbiology, vol. 115, no. 1-3, p. 199-207. https://doi.org/10.1016/j.vetmic.2006.02.001 DOI: https://doi.org/10.1016/j.vetmic.2006.02.001
Tolone, M., Larrondo, C., Yáñez, C. M., Newman, S., Sardina, M. T., Portolano, B. 2016. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Veterinary Research, vol. 12, 7 p. https://doi.org/10.1186/s12917-016-0781-x DOI: https://doi.org/10.1186/s12917-016-0781-x
Unal, N., Çinar, O. D. 2012. Detection of staphylococcal enterotoxin, methicillin-resistant and Panton-Valentine leukocidin genes in coagulase-negative staphylococci isolated from cows and ewes with subclinical mastitis. Tropical Animal Health and Production, vol. 44, p. 369-375. https://doi.org/10.1007/s11250-011-0032-x DOI: https://doi.org/10.1007/s11250-011-0032-x
Vasil, M. 2004. Inflammation of the mammary gland of dairy cows. University of Veterinary Medicine in Košice. ISBN 80-8077-005-0.
Vasileiou, N. G. C., Chatzopoulos, D. C., Sarrou, S., Fragkou, I. A., Katsafadou, A. I., Mavrogianni, V. S., Petinaki, E., Fthenakis, G. C. 2019. Role of staphylococci in mastitis in sheep. Journal of Dairy Research, vol. 86, no. 3, p. 254-266. https://doi.org/10.1017/S0022029919000591 DOI: https://doi.org/10.1017/S0022029919000591
Vautor, E., Cockfield, J., Le Marechal, C., Le Loir, Y., Chevalier, M., Robinson, D. A., Thiery, R., Lindsay, J. 2009. Difference in virulence between Staphylococcus aureus isolates causing gangrenous mastitis versus subclinical mastitis in a dairy sheep flock. Veterinary Research, vol. 40, no. 6, 11 p. https://doi.org/10.1051/vetres/2009039 DOI: https://doi.org/10.1051/vetres/2009039
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.