Assessment of lipid peroxidation in dairy cows with subclinical and clinical mastitis
DOI:
https://doi.org/10.5219/1052Keywords:
cows, lactation, mastitis, lipid peroxidation, S. uberis, coagulase negative staphylococciAbstract
Mastitis is still one of the major causes of economic losses in dairy sector. The routine application of bacteriologic examination of milk samples is often insufficient and for this reason, alternative parameters are used to identify trends in the development of the udder health. Therefore, the objectives of this study were to determine the relationship of oxidative product levels, using malondialdehyde (MDA) as a marker on occurrence of mastitis and its causing pathogens. Dairy herd of 223 Slovak spotted cattle were tested for etiology and occurrence of mastitis based on assessment of clinical signs, abnormal udder secretions, Californian Mastitis Test (CMT) with subsequent collecting of milk samples for bacteriological examination. From 892 quarter milk samples were selected for MDA detection 51 subclinical (SM) and 26 clinical mastitis (CM) quarters with positive CMT score and positive bacteriological examination of Staphylococcus spp. and Streptococcus spp. as well 40 healthy quarters. Results showed that among the current pathogens of the mammary gland belong CNS,
S. aureus, S. sanguinis, S. uberis and E. coli, which were the most frequently isolated from SM and CM. The highest MDA level was observed from clinical cases of mastitis however, increased MDA levels were detectable from subclinical cases. Bacterial isolates from subclinical quarter milk samples are different levels of MDA. In this study, we found that quarter milk samples infected with S. uberis were higher compared to other pathogens. In conclusion, differences in both severity of mastitis and mastitic pathogens were associated with differences of oxidative products in infected udders.
Downloads
Metrics
References
Andrei, S., Pintea, A., Groza, I.S., Crainic, D., Matei, S., Ciupe, S., Bogdan, S. 2010. Evaluation of oxidative changes induced by subclinical mastitis in cows on milk lipids. Lucrari Ştiintifice: Medicina Veterinara (USAMV Iasi), vol. 53, p. 366-371.
Atroshi, F., Parantainen, J., Sankari, S., Jarvinen, M., Lindberg, L. A., Saloniemi, H. 1996. Changes in in-flammation-related blood constituents of mastitic cows. Veterinary Research, vol. 27, p. 125-132.
Castillo, C., Hernández, J., Valverde, I., Pereira, V., Sotillo, J., López Alonso, M., Benedito, J. L. 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res.Vet. Sci., vol. 80, no. 2, p. 133-139. https://doi.org/10.1016/j.rvsc.2005.06.003 DOI: https://doi.org/10.1016/j.rvsc.2005.06.003
Jackson, P., Cockeroft, P. 2002. Clinical Examination of Farm Animals. Oxford, UK : Wiley-Blackwell, p. 154-166. ISBN: 0-632-05706-8. https://doi.org/10.1002/9780470752425 DOI: https://doi.org/10.1002/9780470752425
Kapusta, A., Kuczyńska, B., Puppel, K. 2018. Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PLoS ONE, vol. 13, no. 3, p. 0193512. https://doi.org/10.1371/journal.pone.0193512 DOI: https://doi.org/10.1371/journal.pone.0193512
Khazandia, M., Al-Bar Al-Farhaa A., Coombs W. G. et al. 2018. Genomic characterization of coagulase-negative staphylococci including methicillin-resistant Staphylococcus sciuri causing bovine mastitis. Vet. Microbiology, vol. 219, p. 17-22. https://doi.org/10.1016/j.vetmic.2018.04.004 DOI: https://doi.org/10.1016/j.vetmic.2018.04.004
Kivaria, F. M., Noordhuizen, J. P. 2007. A retrospective study of the aetiology and temporal distribution of bovine clinical mastitis in smallholder dairy herds in the Dar es Salaam region of Tanzania. The Veterinary journal, vol. 173, no. 3, p. 617-622. https://doi.org/10.1016/j.tvjl.2006.01.008 DOI: https://doi.org/10.1016/j.tvjl.2006.01.008
Lange, C. C., Brito, M. A., Reis, D. R., Machado, M. A. et al. 2015. Species-level identification of staphylococci isolated from bovine mastitis in Brazil using partial 16S rRNA sequencing. Vet. Microb., vol. 176, no. 3-4, p. 382-388. https://doi.org/10.1016/j.vetmic.2015.01.024 DOI: https://doi.org/10.1016/j.vetmic.2015.01.024
Malinowski, E., Lassa, H., Klossowska, A., Smulski, S., Markiewiecz, H., Kaczmarowski, M. 2006. Etiological agents of dairy cows’ mastitis in western part of Poland. Pol. J. Vet. Sci., vol. 9, no. 3, p. 191-194.
Monday, S. R., Bohach, G. A.1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol., vol. 37, no. 10, p. 3411-3414. DOI: https://doi.org/10.1128/JCM.37.10.3411-3414.1999
National Mastitis Council Guidelines. 2001. National Mastitis Council Recommended Mastitis Control Program. 2 p. Available at: https://manitowoc.extension.wisc.edu/files/2011/10/NMC-Mastitis-Control-Program1.pdf
Pyörälä, S., Taponen, S. 2009. Coagulase-negative staphylococci - Emerging mastitis pathogens. Veterinary Microbiology, vol. 134, no. 2, p. 3-8. https://doi.org/10.1016/j.vetmic.2008.09.015 DOI: https://doi.org/10.1016/j.vetmic.2008.09.015
Sharif, A., Umer, M., Muhammad, G. 2009. Mastitis control in dairy production. J. of Agric. Soc. Sci., vol. 5, p. 102-105. https://doi.org/10.3920/978-90-8686-550-5 DOI: https://doi.org/10.3920/978-90-8686-550-5
Sharma, L., Kumar Verma, A., Rahal, A., Kumar, A., Nigam, R. 2016. Relationship Between Serum Biomarkers and Oxidative Stress in Dairy Cattle and Buffaloes with Clinical and Sub-clinical Mastitis. Biotechnology, vol. 15, no. 3-4, p. 96-100. https://doi.org/10.3923/biotech.2016.96.100 DOI: https://doi.org/10.3923/biotech.2016.96.100
Sharma, N., Singh, N., Singh, O., Pandey,V., Verma, P. 2011. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Aust. J. Anim. Sci., vol. 24, no. 4, p. 479-484. https://doi.org/10.5713/ajas.2011.10220 DOI: https://doi.org/10.5713/ajas.2011.10220
Suriyasathaporn,W., Chewonarin, T., Vinitketkumnuen, U. 2012. Differences in severity of mastitis and the pathogens causing various oxidative product levels. Advances in Bioscience and Biotechnology, vol. 3, no. 4A, p. 454-458. https://doi.org/10.4236/abb.2012.324064 DOI: https://doi.org/10.4236/abb.2012.324064
Suriyasathaporn, W., Vinitketkumnuen, U., Chewonarin, T., Boonyayatra, S., Kreausukon, K., Schukken, Y. H. 2006. Higher somatic cell counts resulted in higher malondialdehyde concentrations in raw cows’ milk. International Dairy Journal, vol.16, p. 1088-1091. https://doi.org/10.1016/j.idairyj.2005.11.004 DOI: https://doi.org/10.1016/j.idairyj.2005.11.004
Tančin, V., Kirchnerová, K., Foltys, V., Mačuhova, L., Tančinová, D. 2006. Microbial contamination and somatic cell count of bovine milk striped and after udder preparation for milking. Slovak Journal of Animal Science, vol. 39, p. 214-217.
Taponen, S., Simojoki, H., Haveri, M., Larsen, H. D., Pyőrälä, S. 2006. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol., vol. 115, no. 1-3, p.199-207. https://doi.org/10.1016/j.vetmic.2006.02.001 DOI: https://doi.org/10.1016/j.vetmic.2006.02.001
Tenhagen, B. A., Köster, G., Wallmann, J., Heuwieser, W. 2006. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. Journal of Dairy Science, vol. 89, no. 7, p. 2542-2551. https://doi.org/10.3168/jds.S0022-0302(06)72330-X DOI: https://doi.org/10.3168/jds.S0022-0302(06)72330-X
Turk, R., Koledić, M., Maćešić, N., Benić, M., Đuričić, D., Cvetnić, L., Samardžija, M. 2017. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo, vol. 67, p. 91-101. https://doi.org/10.15567/mljekarstvo.2017.0201 DOI: https://doi.org/10.15567/mljekarstvo.2017.0201
Vasiľ, M., Elečko, J., Farkašová, Z., Bíreš, J. 2009. The reduction on the occurrence of mastitis in dairy herd using the innovation of housing conditions, sanitary of milk storage and applying the therapy of mastitis during the lactation. Folia Vet., vol. 53, no. 2, p. 186-189.
Vasiľ, M., Elečko, J., ZIgo, F., Farkašová, Z. 2016. Mastitis control in a system activities of dairy cows breeder. In XXIV Szkola Zimova Hodowców Bydla - Produkcja mleka i wolowiny, Teraźniejszość i przyszlość, Zakopane, 7. - 10.3. 2016: Congreess proceedings, 230 p. ISBN 978-83-926689-2-3.
Vršková, M., Tančin, V., Kirchnerová, K., Sláma, P. 2015. Evaluation of daily milk production in tsigai ewes by somatic cell count. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, p. 206-210. https://doi.org/10.15414/afz.2018.21.04.149-151 DOI: https://doi.org/10.5219/439
Zadoks, R. N., Middleton, J. R., Mcdougall, S., Katholm, J., Schukken, Y. H. 2011. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. Journal of Mammary Gland Biology and Neoplasia, vol. 16, p. 57-72. https://doi.org/10.1007/s10911-011-9236-y DOI: https://doi.org/10.1007/s10911-011-9236-y
Zajác, P., Tomáška, M., Murárová, A., Čapla, J., Čurlej, J. 2012. Quality and safety of raw cow’s milk in Slovakia in 2011. Potravinarstvo, vol. 6, no. 2, p. 64-73. https://doi.org/10.5219/189 DOI: https://doi.org/10.5219/189
Zigo, F., Farkasová, Z., Elecko, J., Lapin, M., Chripková, M., Czerski, A. 2014. Effect of parenteral administration of selenium and vitamin e on health status of mammary gland and on selected antioxidant indexes in blood of dairy cows. Pol. J. of Vet. Sci., vol. 17, np. 2, p. 217-223. https://doi.org/10.2478/pjvs-2014-0031 DOI: https://doi.org/10.2478/pjvs-2014-0031
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.