Research on milk homogenization in the stream homogenizer with separate cream feeding
DOI:
https://doi.org/10.5219/1289Keywords:
milk, homogenization, homogenizer, stream homogenizers, separate cream feedingAbstract
Homogenization, which is used in the technological schemes of production of most dairy products, is the most energy-intensive of the processes of mechanical processing of milk. One promising way to increase the energy efficiency of homogenization is to use separate homogenization and to use a little-researched stream homogenizer with separate cream feeding. The principle of its action is to pre-divide milk into cream and skim milk, and feed the fat phase with a thin stream into the stream of skim milk. This creates the conditions for achieving the high value of the Weber criterion - the main factor in the dispersion of milk fat. The purpose of these researches is to conduct experimental studies and determine the energy consumption and quality of homogenization of milk after treatment in a stream homogenizer. To achieve this goal, a designed experimental setup was used. The dispersive indices of the milk emulsion were determined by computer analysis of micrographs of milk samples obtained with an optical microscope and a digital camera using Microsoft Office Excel and Microsoft Visual Studio C # software using the OpenCV Sharp library. As a result of experimental studies, the critical value of the Weber criterion for homogenization of milk was determined, which is 28. The regularities of dispersion of milk fat in a stream homogenizer with separate feeding of the fat phase have been established. It is determined that the milk treatment in the experimental homogenizer allows us to achieve an emulsion with an average size of fat globules of about 0.8 μm (at the level of valve homogenizers). The value of the homogenization coefficient is obtained for the disruption of the fat globule in the conditions: subject to a single effect on the emulsion, without the influence of vibration and cavitation. This homogenization coefficient equals 3300 m3/2.s-1.
Downloads
Metrics
References
Abiev, R. 2000. Resonance apparatus for processes in liquid-phase systems : autoref dissertation theses: St. Petersburg. 32 p. Available at: https://www.dissercat.com/content/rezonansnaya-apparatura-dlya-protsessov-v-zhidkofaznykh-sistemakh/read/pdf
Ashokkumar, M., Rink, R., Shestakov, S. 2011. Hydrodynamic cavitation – an alternative to ultrasonic food processing. Technical Acoustics, vol. 9, p. 156-166. Available at: http://www.ejta.org/en/ashokkumar1
Deinychenko, G., Samoichuk, K., Kovalyov, O. 2016. Constructions of jet mixing dispergators of milk fat phase. Proceeding of Tavria State Agrotechnological University, vol. 16. no. 1, p. 219-226. Available at: http://nauka.tsatu.edu.ua/print-journals-tdatu/16-1/16_1/31.pdf
Deynichenko, G., Samoichuk, K., Yudina, T., Levchenko, L., Palianychka, N., Verkholantseva, V., Dmytrevskyi, D., Chervonyi, V. 2018. Parameter optimization of milk pulsation homogenizer. Journal of Hygienic Engineering and Design, vol. 24, p. 63-67.
Dhankhar, P. 2014. Homogenization fundamentals. IOSR Journal of Engineering, vol. 4, no. 5, 8 p. https://doi.org/10.9790/3021-04540108 DOI: https://doi.org/10.9790/3021-04540108
Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Bergenståhl, B., Trägårdh, C. 2010. Visual observations and acoustic measurements of cavitation in an experimental model of a high-pressure homogenizers. Journal of Food Engineering, vol. 100, no. 3, p. 504-513. https://doi.org/10.1016/j.jfoodeng.2010.04.038 DOI: https://doi.org/10.1016/j.jfoodeng.2010.04.038
Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Trägårdh, C., Bergenståhl B. 2013. Velocity measurements of turbulent two-phase flow in a high-pressure homogenizer model. Chemical Engineering Communications, vol. 200, no. 1, p. 93-114. https://doi.org/10.1080/00986445.2012.691921 DOI: https://doi.org/10.1080/00986445.2012.691921
Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Trägårdh, C., Bergenståhl, B. 2011. High resolution experimental measurement of turbulent flow field in a high pressure homogenizer model and its implications on turbulent drop fragmentation. Chemical Engineering Science, vol. 66, no. 8, p. 1790-1801. https://doi.org/10.1016/j.ces.2011.01.026 DOI: https://doi.org/10.1016/j.ces.2011.01.026
Innings, F., Trägårdh, C. 2005. Visualization of the drop deformation and break-up process in a high pressure homogenizer. Chemical Engineering & Technology, vol. 28, no. 8, p. 882-891. https://doi.org/10.1002/ceat.200500080 DOI: https://doi.org/10.1002/ceat.200500080
Ion-Titapiccolo, G., Alexander, M., Corredig, M. 2013. Heating of milk before or after homogenization changes its coagulation behaviour during acidification. Food Biophysics, vol. 8, p. 81-89. https://doi.org/10.1007/s11483-012-9275-y DOI: https://doi.org/10.1007/s11483-012-9275-y
Loitsyansky, L. 2003. Fluid and gas mechanics. Moskow, Russia : Drofa, 840 p. ISBN 5-7107-6327-6.
Loncin, M., Merson, R. L. 1979. Food Ingineering. Principles and Selected Applications. New York, USA : Academic Press, 279 p. ISBN-10: 0124545505.
Narvhus, J. A., Abrahamsen, R. K., Østlie, H. M. 2007. P. Walstra, J. T. M. Wouters and T. J. Geurts. Dairy Science and Technology. CRC Taylor & Francis Group, Boca Raton, London, New York, 2006. ISBN 0-8247-2763-0. 782 pp. International Dairy Journal, vol. 17, no. 6, p. 727-728. https://doi.org/10.1016/j.idairyj.2007.01.001 DOI: https://doi.org/10.1016/j.idairyj.2007.01.001
National Standard of Ukraine (DSTU) 8553: 2015. Raw milk and cream raw materials. Rules for taking, sampling and preparation for testing.
Rayner, M., Dejmek, P. 2015. Engineering Aspects of Emulsification and Homogenization in the Food Industry. London, UK : CRC Press Taylor & Francis Group, 331 р. https://doi.org/10.1201/b18436 DOI: https://doi.org/10.1201/b18436
Rovinsky, L. A. 1994. The analysis and calculation of the efficiency of a homogenizing valve. Journal of Food Engineering, vol. 23, no. 4, p. 429-448. https://doi.org/10.1016/0260-8774(94)90103-1 DOI: https://doi.org/10.1016/0260-8774(94)90103-1
Samoichuk, K. 2008. Grounding of parameters and modes of work of opposite-flow stream homogenizator of milk : dissertation theses. Donetsk, Ukraine : The Donetsk National University of Economy and Trade named after Mihaylo Tugan-Baranovskiy. 20 p. Available at: https://revolution.allbest.ru/manufacture/00599306_0.html
Samoichuk, K. 2018. Development of scientific bases of the hydrodynamic dispergating of milk emulsions : dissertation theses. Kharkiv, Ukraine : Kharkiv State University of Food Technology and Trade. 44 p. Available at: http://www.hduht.edu.ua/images/hduht/nauka/zahisty/2018/aref_samoychuk.pdf
Samoichuk, K., Kiurchev, S., Oleksiienko, V., Palyanichka, N., Verholantseva, V. 2016. Investigation of homogenization of milk in a pulsation machine with a vibrating rotor. Eastern-European Journal of Enterprise Technologies, vol. 6, no. 11, p. 16-21. https://doi.org/10.15587/1729-4061.2016.86974 DOI: https://doi.org/10.15587/1729-4061.2016.86974
Samoichuk, K., Kovalyov, O. 2011. The designing laboratory pattern of jet – mixing homogenizer with separated giving of creams. Proceeding of Tavria State Agrotechnological University, vol. 11. no. 6, p.77-83. Available at: http://elar.tsatu.edu.ua/bitstream/123456789/907/1/11.pdf
Samoichuk, K., Kovalyov, O. 2013. Analytical parameters of the process of jet homogenization of milk with separate feeding of cream. Proceeding of Odessa National Academy of Food Technologies, vol. 43, no. 2, p. 77-81. Available at: http://nbuv.gov.ua/UJRN/Np_2013_43%282%29__20
Samoichuk, K., Kovalyov, O. 2015. Increasing the efficiency of a milk jet homogenizer with separate cream feeding. Proceeding of Odessa National Academy of Food Technologies, vol. 47. no. 1, p. 67-72. Available at: https://journals.onaft.edu.ua/index.php/swonaft/article/view/355/1487
Samoichuk, K., Kovalyov, O. Sultanova V. 2015. The quality and the energy efficiency in a jet–mixing homogenization of milk process with the separated giving of creams. Proceeding of Tavria State Agrotechnological University, vol. 15. no. 1, p. 240-248. Available at: http://elar.tsatu.edu.ua/bitstream/123456789/889/1/32.pdf
Samoichuk, K., Zahorko, N., Oleksiienko, V., Petrychenko, S. 2019. Generalization of Factors of Milk Homogenization. Modern Development Paths of Agricultural Production, p. 191-198. https://doi.org/10.1007/978-3-030-14918-5_21 DOI: https://doi.org/10.1007/978-3-030-14918-5_21
Yong, A. P., Islam, M. A., Hasan, N. 2017a. The Effect of pH and High-Pressure Homogenization on Droplet Size. International Journal of Engineering Materials and Manufacture, vol. 2, no. 4, p. 110-122. https://doi.org/10.26776/ijemm.02.04.2017.05 DOI: https://doi.org/10.26776/ijemm.02.04.2017.05
Yong, A. P., Islam, M. A., Hasan, N. 2017b. Effect of pressure on homogenization. Sigma Journal of Engineering and Natural Sciences, vol. 35, no. 1, p. 1-22.
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.